| name | generate_candidate_summary_skill |
| description | Generate a markdown summary report from candidate_profile.csv with statistics and insights |
Generate Candidate Summary Report
This skill generates a comprehensive markdown summary report analyzing candidate profile data with statistics on gender distribution, URR representation, and nationality diversity.
What it does:
- Reads candidate profile CSV data
- Calculates comprehensive statistics (gender, URR, nationality)
- Generates formatted markdown report with tables and insights
- Identifies URR countries represented in the candidate pool
Usage:
Basic Usage
Run the summary generation script with default settings:
python .claude/skills/generate_candidate_summary_skill/generate_summary.py
This uses default paths:
- Input:
/data/home/xiong/dev/Fund_Process_Automation/candidate_profile.csv - Output:
/data/home/xiong/dev/Fund_Process_Automation/summary.md
With Custom Paths
Specify custom input and output files:
python .claude/skills/generate_candidate_summary_skill/generate_summary.py \
--csv_file /path/to/candidate_profile.csv \
--output_file /path/to/summary.md
Command-line Arguments:
--csv_file: Path to input CSV file (default:candidate_profile.csvin project root)--output_file: Path to output markdown file (default:summary.mdin project root)
Input Requirements:
Expected Input File:
- Path:
/data/home/xiong/dev/Fund_Process_Automation/candidate_profile.csv - Format: CSV file with the following columns:
Name: Candidate's full nameGender: Male/Female/UnknownCountry of Nationality: Country nameURR: "yes" or "no"
Note: This file is typically generated by the process_resume_skill.
Output:
Generated File:
- Path:
/data/home/xiong/dev/Fund_Process_Automation/summary.md - Format: Markdown document
Report Contents:
Overview Section
- Total number of candidates analyzed
Summary Statistics Tables
- Gender distribution (Male/Female/Unknown) with counts and percentages
- URR vs Non-URR distribution with percentages
- Top 10 nationalities with counts and URR status
Key Insights
- Gender balance analysis
- URR representation percentage
- Geographic diversity metrics
- Most common nationality
URR Countries List
- All URR countries represented in the pool
- Candidate count per URR country
Example Output Structure:
# Candidate Profile Summary
## Overview
This analysis covers X candidate resumes...
## Summary Statistics
### Gender Distribution
| Gender | Count | Percentage |
|--------|-------|------------|
| Male | X | XX.X% |
| Female | X | XX.X% |
### Under-Represented Region (URR) Distribution
| URR Status | Count | Percentage |
|------------|-------|------------|
| URR (Yes) | X | XX.X% |
### Top Nationalities Represented
| Country | Count | URR Status |
|---------|-------|------------|
...
## Key Insights
1. Gender Balance: ...
2. URR Representation: ...
3. Geographic Diversity: ...
## URR Countries Identified
- Country: X candidate(s)
...
Dependencies:
- Python 3.x
- pandas library (
pip install pandas)
Configuration:
Default file paths (can be overridden with command-line arguments):
- Input:
/data/home/xiong/dev/Fund_Process_Automation/candidate_profile.csv - Output:
/data/home/xiong/dev/Fund_Process_Automation/summary.md
Error Handling:
The script includes comprehensive error handling:
- Validates input CSV file exists before processing
- Checks for required columns (Gender, URR, Country of Nationality)
- Ensures CSV is not empty
- Creates output directory if it doesn't exist
- Provides clear error messages via logging
Console Output:
When successful, displays:
==================================================
SUMMARY REPORT GENERATED
==================================================
Output file: /path/to/summary.md
Total candidates: X
Male: X, Female: X, Unknown: X
URR: X, Non-URR: X
==================================================
Key Features:
- Flexible paths: Use command-line arguments to specify custom input/output locations
- Robust validation: Checks file existence, column presence, and data integrity
- Automatic directory creation: Creates output directories if they don't exist
- Comprehensive logging: Provides detailed information about processing steps
- Dynamic date: Report includes current generation date
- Error handling: Graceful failure with informative error messages