Claude Code Plugins

Community-maintained marketplace

Feedback

terraform-basics

@jonhill90/vibes
7
0

Terraform infrastructure-as-code patterns for AWS and Azure provisioning. Use when creating or modifying .tf files, writing Terraform modules, managing remote state (S3, Azure Storage), working with terraform commands (init, plan, apply, destroy), configuring providers (AWS, Azure, Google Cloud), or implementing infrastructure best practices like module design, workspace strategies, and state locking.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name terraform-basics
description Terraform infrastructure-as-code patterns for AWS and Azure provisioning. Use when creating or modifying .tf files, writing Terraform modules, managing remote state (S3, Azure Storage), working with terraform commands (init, plan, apply, destroy), configuring providers (AWS, Azure, Google Cloud), or implementing infrastructure best practices like module design, workspace strategies, and state locking.

Terraform Basics Skill

Purpose

Provide infrastructure-as-code best practices, command workflows, and module design patterns for Terraform-based AWS and Azure provisioning.

Key Capabilities:

  • Terraform command workflows
  • Module design patterns
  • Remote state management
  • Provider configuration
  • Security and compliance
  • Troubleshooting

When to Use This Skill

Auto-activates when:

  • Creating or modifying .tf files (main.tf, variables.tf, outputs.tf)
  • Writing Terraform modules (modules/*/)
  • Managing state files (terraform.tfstate)
  • Running terraform commands (init, plan, apply, destroy)
  • Configuring cloud providers (AWS, Azure, GCP)
  • Implementing infrastructure patterns (VPC, networking, compute)

Quick Start

New Terraform Project Checklist

  • Provider Configuration: Define required providers with version constraints
  • Backend Configuration: Configure remote state (S3, Azure Storage, Terraform Cloud)
  • Module Structure: Organize into reusable modules
  • Variables: Define input variables with validation
  • Outputs: Export values for other modules/projects
  • Version Pinning: Lock provider and module versions
  • State Locking: Enable state locking (DynamoDB, Azure Storage)
  • Pre-commit Hooks: Add terraform fmt, validate, tflint

New Module Checklist

  • Module Directory: modules/{module-name}/
  • Required Files: main.tf, variables.tf, outputs.tf, README.md
  • Input Validation: Validate variable inputs
  • Documentation: Document inputs, outputs, examples
  • Versioning: Tag module releases (v1.0.0)
  • Testing: Write tests (terraform test, terratest)

Core Principles (7 Key Rules)

1. State Files Are Sacred - Always Use Remote State

Never commit terraform.tfstate to git. Always use remote backend.

✅ GOOD - Remote state with locking
terraform {
  backend "azurerm" {
    resource_group_name  = "terraform-state-rg"
    storage_account_name = "tfstatestorage"
    container_name       = "tfstate"
    key                  = "prod.terraform.tfstate"
  }
}

❌ BAD - Local state (no locking, no collaboration)
# No backend configuration = local state
# terraform.tfstate in .gitignore but risky

Why: State locking prevents concurrent modifications, remote state enables team collaboration.

2. Always Plan Before Apply

Review changes before applying to production.

✅ GOOD - Plan → Review → Apply workflow
terraform plan -out=tfplan
# Review plan output carefully
terraform show tfplan
# If approved:
terraform apply tfplan

❌ BAD - Direct apply without review
terraform apply -auto-approve  # DANGEROUS in production!

Why: Prevents accidental resource deletion, cost overruns, security misconfigurations.

3. Use Modules for Reusability (DRY Principle)

Don't repeat infrastructure code. Create reusable modules.

✅ GOOD - Reusable module
# modules/azure-vnet/main.tf
resource "azurerm_virtual_network" "vnet" {
  name                = var.vnet_name
  address_space       = var.address_space
  location            = var.location
  resource_group_name = var.resource_group_name
}

# Root module usage
module "vnet_prod" {
  source              = "./modules/azure-vnet"
  vnet_name           = "prod-vnet"
  address_space       = ["10.0.0.0/16"]
  location            = "eastus"
  resource_group_name = azurerm_resource_group.prod.name
}

❌ BAD - Copy-pasted resource blocks
resource "azurerm_virtual_network" "vnet_prod" { ... }
resource "azurerm_virtual_network" "vnet_staging" { ... }
resource "azurerm_virtual_network" "vnet_dev" { ... }
# Same code repeated 3 times

Why: Maintainability, consistency, reduced errors.

4. Pin Provider and Module Versions

Lock versions for reproducibility.

✅ GOOD - Version constraints
terraform {
  required_version = ">= 1.5.0"

  required_providers {
    azurerm = {
      source  = "hashicorp/azurerm"
      version = "~> 3.70.0"  # Locked to 3.70.x
    }
  }
}

module "network" {
  source  = "terraform-aws-modules/vpc/aws"
  version = "5.1.0"  # Exact version
}

❌ BAD - No version constraints
terraform {
  required_providers {
    azurerm = {
      source = "hashicorp/azurerm"
      # No version = latest (unpredictable)
    }
  }
}

Why: Prevents breaking changes, ensures consistent deployments.

5. Use Data Sources Over Hardcoded Values

Query existing resources instead of hardcoding.

✅ GOOD - Data source
data "azurerm_resource_group" "existing" {
  name = "existing-rg"
}

resource "azurerm_storage_account" "storage" {
  resource_group_name = data.azurerm_resource_group.existing.name
  location            = data.azurerm_resource_group.existing.location
}

❌ BAD - Hardcoded values
resource "azurerm_storage_account" "storage" {
  resource_group_name = "existing-rg"  # Hardcoded
  location            = "eastus"       # Hardcoded
}

Why: Flexibility, environment portability, reduced duplication.

6. Validate Inputs and Outputs

Add validation rules and output documentation.

✅ GOOD - Input validation
variable "environment" {
  type        = string
  description = "Environment name (dev, staging, prod)"

  validation {
    condition     = contains(["dev", "staging", "prod"], var.environment)
    error_message = "Environment must be dev, staging, or prod."
  }
}

output "vnet_id" {
  description = "Azure Virtual Network ID for use in other modules"
  value       = azurerm_virtual_network.vnet.id
}

❌ BAD - No validation or documentation
variable "environment" {
  type = string
  # No validation, no description
}

output "vnet_id" {
  value = azurerm_virtual_network.vnet.id
  # No description
}

Why: Prevents invalid configurations, improves documentation.

7. Use Workspaces for Environments (When Appropriate)

Workspaces for environment isolation (dev, staging, prod).

✅ GOOD - Workspace strategy
terraform workspace new dev
terraform workspace new staging
terraform workspace new prod

# Switch to environment
terraform workspace select prod
terraform plan -var-file=prod.tfvars

❌ BAD - Single workspace for all environments
# No isolation, risk of mixing dev/prod resources

Why: Environment isolation, reduced accidental cross-environment changes.


Common Terraform Commands

Command Purpose When to Use
terraform init Initialize backend, download providers First time, after adding providers/modules
terraform validate Check syntax validity After editing .tf files
terraform fmt Format code to standard style Before committing
terraform plan Preview changes Before apply, during review
terraform apply Apply changes After plan approval
terraform destroy Delete all resources Tearing down environments
terraform state list List resources in state Debugging, auditing
terraform state show Show resource details Inspecting specific resources
terraform import Import existing resources Adopting existing infrastructure
terraform output Display output values Retrieving module outputs

Quick Reference

File Naming Conventions

File Purpose
main.tf Primary resource definitions
variables.tf Input variable declarations
outputs.tf Output value definitions
providers.tf Provider configurations
backend.tf Backend configuration (remote state)
terraform.tfvars Variable values (environment-specific)
versions.tf Terraform and provider version constraints

Module Structure

modules/azure-vnet/
├── main.tf          # Resource definitions
├── variables.tf     # Input variables
├── outputs.tf       # Outputs
├── README.md        # Module documentation
├── examples/        # Usage examples
│   └── basic/
│       └── main.tf
└── tests/           # Module tests
    └── basic_test.go

Anti-Patterns to Avoid

❌ Anti-Pattern 1: Monolithic Configuration

Problem: Single main.tf with 1000+ lines Issue: Hard to maintain, understand, and collaborate Fix: Split into modules and logical files

❌ Anti-Pattern 2: Hardcoded Credentials

Problem: AWS keys or Azure credentials in .tf files Issue: Security risk, credential leakage Fix: Use environment variables, managed identities, or credential helpers

❌ Anti-Pattern 3: No State Locking

Problem: Multiple users applying changes simultaneously Issue: State corruption, race conditions Fix: Enable state locking (DynamoDB for S3, blob lease for Azure)

❌ Anti-Pattern 4: Auto-Approve in Production

Problem: terraform apply -auto-approve in CI/CD Issue: No human review, risky changes Fix: Require manual approval for production applies

❌ Anti-Pattern 5: Ignoring Plan Output

Problem: Running apply without reviewing plan Issue: Accidental deletions, unexpected changes Fix: Always review terraform plan output before apply


Common Workflows

Workflow 1: Initial Project Setup

# 1. Create project directory
mkdir -p terraform/modules

# 2. Initialize Terraform
cd terraform
terraform init

# 3. Create backend configuration
cat > backend.tf <<EOF
terraform {
  backend "azurerm" {
    resource_group_name  = "terraform-state-rg"
    storage_account_name = "tfstate"
    container_name       = "tfstate"
    key                  = "project.tfstate"
  }
}
EOF

# 4. Initialize backend
terraform init -backend-config=backend.hcl

# 5. Create workspace
terraform workspace new dev

Workflow 2: Daily Development

# 1. Pull latest state
terraform refresh

# 2. Make changes to .tf files
# Edit main.tf, variables.tf, etc.

# 3. Format code
terraform fmt -recursive

# 4. Validate syntax
terraform validate

# 5. Plan changes
terraform plan -out=tfplan

# 6. Review plan
terraform show tfplan

# 7. Apply changes
terraform apply tfplan

Workflow 3: Multi-Environment Deployment

# Deploy to dev
terraform workspace select dev
terraform plan -var-file=dev.tfvars -out=dev.tfplan
terraform apply dev.tfplan

# Deploy to staging
terraform workspace select staging
terraform plan -var-file=staging.tfvars -out=staging.tfplan
terraform apply staging.tfplan

# Deploy to prod (with approval)
terraform workspace select prod
terraform plan -var-file=prod.tfvars -out=prod.tfplan
# Manual review and approval
terraform apply prod.tfplan

Navigation Guide

Need to... Read this
Learn terraform commands terraform-commands.md
Manage state files state-management.md
Design reusable modules module-patterns.md

Resource Files

terraform-commands.md

Complete command reference with examples, flags, and troubleshooting

state-management.md

Remote state backends, locking, migration, disaster recovery

module-patterns.md

Module design, composition, testing, versioning, registry publishing


Related Skills

  • azure-basics - Azure-specific resource patterns and CLI commands
  • task-management - Dependency analysis for infrastructure ordering

Skill Status: COMPLETE ✅ Line Count: 435 ✅ Progressive Disclosure: 3 resource files ✅