Claude Code Plugins

Community-maintained marketplace

Feedback

Guide for implementing Grafana Tempo - a high-scale distributed tracing backend for OpenTelemetry traces. Use when configuring Tempo deployments, setting up storage backends (S3, Azure Blob, GCS), writing TraceQL queries, deploying via Helm, understanding trace structure, or troubleshooting Tempo issues on Kubernetes.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name tempo
description Guide for implementing Grafana Tempo - a high-scale distributed tracing backend for OpenTelemetry traces. Use when configuring Tempo deployments, setting up storage backends (S3, Azure Blob, GCS), writing TraceQL queries, deploying via Helm, understanding trace structure, or troubleshooting Tempo issues on Kubernetes.

Grafana Tempo Skill

Comprehensive guide for Grafana Tempo - the cost-effective, high-scale distributed tracing backend designed for OpenTelemetry.

What is Tempo?

Tempo is a high-scale distributed tracing backend that:

  • Trace-ID lookup model - No indexing of every attribute, keeps ingestion fast and storage costs low
  • OpenTelemetry native - First-class support for OTLP protocol
  • Object storage backed - Stores traces in affordable S3, GCS, or Azure Blob Storage
  • TraceQL query language - Powerful query language inspired by PromQL and LogQL
  • Apache Parquet format - 5-10x less data pulled per query vs legacy formats
  • Multi-tenant by default - Built-in tenant isolation via X-Scope-OrgID header

Architecture Overview

Core Components

Component Purpose
Distributor Entry point for trace data, routes to ingesters via consistent hash ring
Ingester Buffers traces in memory, creates Parquet blocks, flushes to storage
Query Frontend Query orchestration, shards blockID space, coordinates queriers
Querier Locates traces in ingesters or storage using bloom filters
Compactor Compresses blocks, deduplicates data, manages retention
Metrics Generator Optional: derives metrics from traces

Data Flow

Write Path:

Applications → Collector → Distributor → Ingester → Object Storage
                                  ↓
                           Consistent Hash Ring
                           (routes by traceID)

Read Path:

Query Request → Query Frontend → Queriers → Ingesters (recent data)
                      ↓                            ↓
                 Block Sharding          Object Storage (historical data)
                      ↓                            ↓
              Parallel Querier Work      Bloom Filters + Indexes

Deployment Modes

1. Monolithic Mode (-target=all)

  • All components in single process
  • Best for: Local testing, small-scale deployments
  • Cannot horizontally scale component count
  • Scale by increasing replicas

2. Scalable Monolithic (-target=scalable-single-binary)

  • All components in one process with horizontal scaling
  • Each instance runs all components
  • Good for development with scaling needs

3. Microservices Mode (Distributed) - Recommended for Production

# Using tempo-distributed Helm chart
distributor:
  replicas: 3

ingester:
  replicas: 3

querier:
  replicas: 2

queryFrontend:
  replicas: 2

compactor:
  replicas: 1

Helm Deployment

Add Repository

helm repo add grafana https://grafana.github.io/helm-charts
helm repo update

Install Distributed Tempo

helm install tempo grafana/tempo-distributed \
  --namespace monitoring \
  --values values.yaml

Production Values Example

# Storage configuration
storage:
  trace:
    backend: azure  # or s3, gcs
    azure:
      container_name: tempo-traces
      storage_account_name: mystorageaccount
      use_federated_token: true  # Workload Identity

# Distributor
distributor:
  replicas: 3
  resources:
    requests:
      cpu: 500m
      memory: 2Gi
    limits:
      memory: 4Gi

# Ingester
ingester:
  replicas: 3
  resources:
    requests:
      cpu: 1000m
      memory: 2Gi
    limits:
      memory: 8Gi  # Spikes to 8GB periodically
  persistence:
    enabled: true
    size: 20Gi

# Querier
querier:
  replicas: 2
  resources:
    requests:
      cpu: 100m
      memory: 256Mi
    limits:
      memory: 4Gi

# Query Frontend
queryFrontend:
  replicas: 2
  resources:
    requests:
      cpu: 100m
      memory: 100Mi
    limits:
      memory: 2Gi

# Compactor
compactor:
  replicas: 1
  resources:
    requests:
      cpu: 500m
      memory: 2Gi
    limits:
      memory: 6Gi

# Block retention
compactor:
  compaction:
    block_retention: 336h  # 14 days

# Gateway for external access
gateway:
  enabled: true
  replicas: 1

# Metrics Generator (optional)
metricsGenerator:
  enabled: false

Storage Configuration

Azure Blob Storage (Recommended for Azure)

storage:
  trace:
    backend: azure
    azure:
      container_name: tempo-traces
      storage_account_name: <storage-account-name>
      # Option 1: Workload Identity (Recommended)
      use_federated_token: true
      # Option 2: User-Assigned Managed Identity
      use_managed_identity: true
      user_assigned_id: <identity-client-id>
      # Option 3: Account Key (Dev only)
      # storage_account_key: <account-key>
      endpoint_suffix: blob.core.windows.net
      hedge_requests_at: 400ms
      hedge_requests_up_to: 2

AWS S3

storage:
  trace:
    backend: s3
    s3:
      bucket: my-tempo-bucket
      region: us-east-1
      endpoint: s3.us-east-1.amazonaws.com
      # Use IAM roles or access keys
      access_key: <access-key>
      secret_key: <secret-key>

Google Cloud Storage

storage:
  trace:
    backend: gcs
    gcs:
      bucket_name: my-tempo-bucket
      # Uses Workload Identity or service account

TraceQL Query Language

Basic Queries

# Simplest query - all spans
{ }

# Filter by service
{ resource.service.name = "frontend" }

# Filter by operation
{ span:name = "GET /api/orders" }

# Filter by status
{ span:status = error }

# Filter by duration
{ span:duration > 500ms }

# Multiple conditions
{ resource.service.name = "api" && span:status = error }

Structural Operators

# Direct parent-child relationship
{ resource.service.name = "frontend" } > { resource.service.name = "api" }

# Ancestor-descendant relationship
{ span:name = "GET /api/products" } >> { span.db.system = "postgresql" }

# Sibling relationship
{ span:name = "span-a" } ~ { span:name = "span-b" }

Aggregation Functions

# Count spans
{ } | count() > 10

# Average duration
{ } | avg(span:duration) > 20ms

# Max duration
{ span:status = error } | max(span:duration)

Metrics Functions

# Rate of errors
{ span:status = error } | rate()

# Count over time
{ span:name = "GET /:endpoint" } | count_over_time()

# Percentile latency
{ span:name = "GET /:endpoint" } | quantile_over_time(span:duration, .99)

# Group by service
{ span:status = error } | rate() by(resource.service.name)

# Top 10 by error rate
{ span:status = error } | rate() by(resource.service.name) | topk(10)

Trace Structure

Intrinsic Fields (colon separator)

Field Description
span:name Operation name
span:duration Elapsed time (e.g., "10ms", "1.5s")
span:status ok, error, or unset
span:kind server, client, producer, consumer, internal
trace:duration Total trace duration
trace:rootName Root span name
trace:rootService Root span service

Attribute Scopes (period separator)

Scope Example Description
span. span.http.method Span-level attributes
resource. resource.service.name Resource attributes
event. event.exception.message Event attributes
link. link.traceID Link attributes

Receiver Endpoints

Protocol Port Endpoint
OTLP gRPC 4317 /v1/traces
OTLP HTTP 4318 /v1/traces
Jaeger gRPC 14250 -
Jaeger Thrift HTTP 14268 /api/traces
Jaeger Thrift Compact 6831 UDP
Jaeger Thrift Binary 6832 UDP
Zipkin 9411 /api/v2/spans

Multi-Tenancy

# Enable multi-tenancy
multitenancy_enabled: true

# All requests must include X-Scope-OrgID header
# Example:
# curl -H "X-Scope-OrgID: tenant-1" http://tempo:3200/api/traces/<traceID>

Azure Identity Configuration

Workload Identity Federation (Recommended)

1. Enable Workload Identity on AKS:

az aks update \
  --name <aks-cluster> \
  --resource-group <rg> \
  --enable-oidc-issuer \
  --enable-workload-identity

2. Create User-Assigned Managed Identity:

az identity create \
  --name tempo-identity \
  --resource-group <rg>

IDENTITY_CLIENT_ID=$(az identity show --name tempo-identity --resource-group <rg> --query clientId -o tsv)

3. Assign Storage Permission:

az role assignment create \
  --role "Storage Blob Data Contributor" \
  --assignee-object-id <principal-id> \
  --scope /subscriptions/<sub>/resourceGroups/<rg>/providers/Microsoft.Storage/storageAccounts/<storage>

4. Create Federated Credential:

az identity federated-credential create \
  --name tempo-federated \
  --identity-name tempo-identity \
  --resource-group <rg> \
  --issuer <aks-oidc-issuer-url> \
  --subject system:serviceaccount:monitoring:tempo \
  --audiences api://AzureADTokenExchange

5. Configure Helm Values:

serviceAccount:
  annotations:
    azure.workload.identity/client-id: <IDENTITY_CLIENT_ID>

podLabels:
  azure.workload.identity/use: "true"

storage:
  trace:
    azure:
      use_federated_token: true

Troubleshooting

Common Issues

1. Container Not Found (Azure)

az storage container create --name tempo-traces --account-name <storage>

2. Authorization Failure (Azure)

# Verify RBAC assignment
az role assignment list --scope <storage-scope>

# Assign if missing
az role assignment create \
  --role "Storage Blob Data Contributor" \
  --assignee-object-id <principal-id> \
  --scope <storage-scope>

3. Ingester OOM

ingester:
  resources:
    limits:
      memory: 16Gi  # Increase from 8Gi

4. Query Timeout

querier:
  query_timeout: 5m
  max_concurrent_queries: 20

Diagnostic Commands

# Check pod status
kubectl get pods -n monitoring -l app.kubernetes.io/name=tempo

# Check distributor logs
kubectl logs -n monitoring -l app.kubernetes.io/component=distributor --tail=100

# Check ingester logs
kubectl logs -n monitoring -l app.kubernetes.io/component=ingester --tail=100

# Verify readiness
kubectl exec -it <tempo-pod> -n monitoring -- wget -qO- http://localhost:3200/ready

# Check ring status
kubectl port-forward svc/tempo-distributor 3200:3200 -n monitoring
curl http://localhost:3200/distributor/ring

API Reference

Trace Retrieval

# Get trace by ID
GET /api/traces/<traceID>

# Search traces (TraceQL)
GET /api/search?q={resource.service.name="api"}

# Search tags
GET /api/search/tags
GET /api/search/tag/<tag>/values

Health

GET /ready
GET /metrics

Reference Documentation

For detailed configuration by topic:

External Resources