Claude Code Plugins

Community-maintained marketplace

Feedback

Query Danish real estate data from Boliga.dk as pandas DataFrames. Use when the user asks about Danish property prices, real estate searches, market statistics, or housing analysis in Denmark.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name boliga-api
description Query Danish real estate data from Boliga.dk as pandas DataFrames. Use when the user asks about Danish property prices, real estate searches, market statistics, or housing analysis in Denmark.

Boliga API

Query Danish real estate data via scripts/boliga.py.

Usage

import sys
sys.path.insert(0, '<skill-path>/scripts')
from boliga import get_properties, Municipality, PropertyType, SortOrder

# Search properties
df = get_properties(
    municipality=Municipality.ROSKILDE,
    property_type=PropertyType.TERRACED,
    price_max=5000000
)

# Analyze with pandas
avg_sqm = df['sqm_price'].mean()
df.groupby('zip_code')['price'].median()

Functions

Function Returns Description
get_properties(...) DataFrame Active listings with filters
get_sold_properties(...) DataFrame Historical sales
get_estate_details(id) dict Property details
get_property_history(id) DataFrame Property sale history
get_market_statistics() dict National price trends
search_location(query) DataFrame Location autocomplete
get_new_construction(...) DataFrame New construction projects

Key Parameters

Municipalities: Municipality.COPENHAGEN, ROSKILDE, AARHUS, ODENSE, FREDERIKSBERG, GENTOFTE

Property types: PropertyType.VILLA, TERRACED, APARTMENT, HOLIDAY, COOPERATIVE, FARM

Sort: SortOrder.PRICE_ASC, PRICE_DESC, SQM_PRICE_ASC, DAYS_FOR_SALE_ASC

DataFrame Columns

get_properties() returns: id, street, city, zip_code, price, sqm_price, size, rooms, build_year, property_type, days_for_sale, lot_size, energy_class, lat, lon, views