Claude Code Plugins

Community-maintained marketplace

Feedback

Analyze Excel spreadsheets, create pivot tables, generate charts, and perform data analysis. Use when analyzing Excel files, spreadsheets, tabular data, or .xlsx files.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Excel Analysis
description Analyze Excel spreadsheets, create pivot tables, generate charts, and perform data analysis. Use when analyzing Excel files, spreadsheets, tabular data, or .xlsx files.

Excel Analysis

Quick start

Read Excel files with pandas:

import pandas as pd

# Read Excel file
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")

# Display first few rows
print(df.head())

# Basic statistics
print(df.describe())

Reading multiple sheets

Process all sheets in a workbook:

import pandas as pd

# Read all sheets
excel_file = pd.ExcelFile("workbook.xlsx")

for sheet_name in excel_file.sheet_names:
    df = pd.read_excel(excel_file, sheet_name=sheet_name)
    print(f"\n{sheet_name}:")
    print(df.head())

Data analysis

Perform common analysis tasks:

import pandas as pd

df = pd.read_excel("sales.xlsx")

# Group by and aggregate
sales_by_region = df.groupby("region")["sales"].sum()
print(sales_by_region)

# Filter data
high_sales = df[df["sales"] > 10000]

# Calculate metrics
df["profit_margin"] = (df["revenue"] - df["cost"]) / df["revenue"]

# Sort by column
df_sorted = df.sort_values("sales", ascending=False)

Creating Excel files

Write data to Excel with formatting:

import pandas as pd

df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150],
    "Profit": [20, 40, 30]
})

# Write to Excel
writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")
df.to_excel(writer, sheet_name="Sales", index=False)

# Get worksheet for formatting
worksheet = writer.sheets["Sales"]

# Auto-adjust column widths
for column in worksheet.columns:
    max_length = 0
    column_letter = column[0].column_letter
    for cell in column:
        if len(str(cell.value)) > max_length:
            max_length = len(str(cell.value))
    worksheet.column_dimensions[column_letter].width = max_length + 2

writer.close()

Pivot tables

Create pivot tables programmatically:

import pandas as pd

df = pd.read_excel("sales_data.xlsx")

# Create pivot table
pivot = pd.pivot_table(
    df,
    values="sales",
    index="region",
    columns="product",
    aggfunc="sum",
    fill_value=0
)

print(pivot)

# Save pivot table
pivot.to_excel("pivot_report.xlsx")

Charts and visualization

Generate charts from Excel data:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_excel("data.xlsx")

# Create bar chart
df.plot(x="category", y="value", kind="bar")
plt.title("Sales by Category")
plt.xlabel("Category")
plt.ylabel("Sales")
plt.tight_layout()
plt.savefig("chart.png")

# Create pie chart
df.set_index("category")["value"].plot(kind="pie", autopct="%1.1f%%")
plt.title("Market Share")
plt.ylabel("")
plt.savefig("pie_chart.png")

Data cleaning

Clean and prepare Excel data:

import pandas as pd

df = pd.read_excel("messy_data.xlsx")

# Remove duplicates
df = df.drop_duplicates()

# Handle missing values
df = df.fillna(0)  # or df.dropna()

# Remove whitespace
df["name"] = df["name"].str.strip()

# Convert data types
df["date"] = pd.to_datetime(df["date"])
df["amount"] = pd.to_numeric(df["amount"], errors="coerce")

# Save cleaned data
df.to_excel("cleaned_data.xlsx", index=False)

Merging and joining

Combine multiple Excel files:

import pandas as pd

# Read multiple files
df1 = pd.read_excel("sales_q1.xlsx")
df2 = pd.read_excel("sales_q2.xlsx")

# Concatenate vertically
combined = pd.concat([df1, df2], ignore_index=True)

# Merge on common column
customers = pd.read_excel("customers.xlsx")
sales = pd.read_excel("sales.xlsx")

merged = pd.merge(sales, customers, on="customer_id", how="left")

merged.to_excel("merged_data.xlsx", index=False)

Advanced formatting

Apply conditional formatting and styles:

import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill, Font

# Create Excel file
df = pd.DataFrame({
    "Product": ["A", "B", "C"],
    "Sales": [100, 200, 150]
})

df.to_excel("formatted.xlsx", index=False)

# Load workbook for formatting
wb = load_workbook("formatted.xlsx")
ws = wb.active

# Apply conditional formatting
red_fill = PatternFill(start_color="FF0000", end_color="FF0000", fill_type="solid")
green_fill = PatternFill(start_color="00FF00", end_color="00FF00", fill_type="solid")

for row in range(2, len(df) + 2):
    cell = ws[f"B{row}"]
    if cell.value < 150:
        cell.fill = red_fill
    else:
        cell.fill = green_fill

# Bold headers
for cell in ws[1]:
    cell.font = Font(bold=True)

wb.save("formatted.xlsx")

Performance tips

  • Use read_excel with usecols to read specific columns only
  • Use chunksize for very large files
  • Consider using engine='openpyxl' or engine='xlrd' based on file type
  • Use dtype parameter to specify column types for faster reading

Available packages

  • pandas - Data analysis and manipulation (primary)
  • openpyxl - Excel file creation and formatting
  • xlrd - Reading older .xls files
  • xlsxwriter - Advanced Excel writing capabilities
  • matplotlib - Chart generation