Claude Code Plugins

Community-maintained marketplace

Feedback

Comprehensive guide for FinLab quantitative trading package for Taiwan stock market (台股). Use when working with trading strategies, backtesting, Taiwan stock data, FinLabDataFrame, factor analysis, stock selection, or when the user mentions FinLab, trading, 回測, 策略, 台股, quant trading, or stock market analysis. Includes data access, strategy development, backtesting workflows, and best practices.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name finlab
description Comprehensive guide for FinLab quantitative trading package for Taiwan stock market (台股). Use when working with trading strategies, backtesting, Taiwan stock data, FinLabDataFrame, factor analysis, stock selection, or when the user mentions FinLab, trading, 回測, 策略, 台股, quant trading, or stock market analysis. Includes data access, strategy development, backtesting workflows, and best practices.
allowed-tools Read, Grep, Glob, Bash

FinLab Quantitative Trading Package

Overview

FinLab is a comprehensive Python package for quantitative trading strategy development, backtesting, and financial data analysis, specifically designed for the Taiwan stock market (TSE/OTC, 台股). It provides:

  • Extensive Data Access: Price data, financial statements, monthly revenue, valuation metrics, institutional trading, technical indicators
  • FinLabDataFrame: Enhanced pandas DataFrame with trading-specific methods (is_largest, is_smallest, rise, fall, sustain, hold_until)
  • Backtesting Engine: Robust sim() function with rebalancing, transaction costs, stop-loss/take-profit, risk management
  • Factor Analysis: IC calculation, Shapley values, centrality analysis, regression trends
  • Machine Learning: Feature engineering for TA-Lib indicators, label generation for returns

Prerequisites

Before running any FinLab code, verify:

  1. API Token is set (required - finlab will fail without it):

    echo $FINLAB_API_TOKEN
    # If empty, set it: export FINLAB_API_TOKEN="your_token"
    # Get token from: https://ai.finlab.tw/api_token/
    
  2. FinLab is installed:

    python3 -c "import finlab" || python3 -m pip install finlab
    

Quick Start Example

from finlab import data
from finlab.backtest import sim

# 1. Fetch data
close = data.get("price:收盤價")
vol = data.get("price:成交股數")
pb = data.get("price_earning_ratio:股價淨值比")

# 2. Create conditions
cond1 = close.rise(10)  # Rising last 10 days
cond2 = vol.average(20) > 1000*1000  # High liquidity
cond3 = pb.rank(axis=1, pct=True) < 0.3  # Low P/B ratio

# 3. Combine conditions and select stocks
position = cond1 & cond2 & cond3
position = pb[position].is_smallest(10)  # Top 10 lowest P/B

# 4. Backtest
report = sim(position, resample="M", upload=False)

# 5. Print metrics - Two equivalent ways:

# Option A: Using metrics object
print(report.metrics.annual_return())
print(report.metrics.sharpe_ratio())
print(report.metrics.max_drawdown())

# Option B: Using get_stats() dictionary (different key names!)
stats = report.get_stats()
print(f"CAGR: {stats['cagr']:.2%}")
print(f"Sharpe: {stats['monthly_sharpe']:.2f}")
print(f"MDD: {stats['max_drawdown']:.2%}")

report

Core Workflow: 5-Step Strategy Development

Step 1: Fetch Data

Use data.get("<TABLE>:<COLUMN>") to retrieve data:

from finlab import data

# Price data
close = data.get("price:收盤價")
volume = data.get("price:成交股數")

# Financial statements
roe = data.get("fundamental_features:ROE稅後")
revenue = data.get("monthly_revenue:當月營收")

# Valuation
pe = data.get("price_earning_ratio:本益比")
pb = data.get("price_earning_ratio:股價淨值比")

# Institutional trading
foreign_buy = data.get("institutional_investors_trading_summary:外陸資買賣超股數(不含外資自營商)")

# Technical indicators
rsi = data.indicator("RSI", timeperiod=14)
macd, macd_signal, macd_hist = data.indicator("MACD", fastperiod=12, slowperiod=26, signalperiod=9)

Filter by market/category using data.universe():

# Limit to specific industry
with data.universe(market='TSE_OTC', category=['水泥工業']):
    price = data.get('price:收盤價')

# Set globally
data.set_universe(market='TSE_OTC', category='半導體')

See data-reference.md for complete data catalog.

Step 2: Create Factors & Conditions

Use FinLabDataFrame methods to create boolean conditions:

# Trend
rising = close.rise(10)  # Rising vs 10 days ago
sustained_rise = rising.sustain(3)  # Rising for 3 consecutive days

# Moving averages
sma60 = close.average(60)
above_sma = close > sma60

# Ranking
top_market_value = data.get('etl:market_value').is_largest(50)
low_pe = pe.rank(axis=1, pct=True) < 0.2  # Bottom 20% by P/E

# Industry ranking
industry_top = roe.industry_rank() > 0.8  # Top 20% within industry

See dataframe-reference.md for all FinLabDataFrame methods.

Step 3: Construct Position DataFrame

Combine conditions with & (AND), | (OR), ~ (NOT):

# Simple position: hold stocks meeting all conditions
position = cond1 & cond2 & cond3

# Limit number of stocks
position = factor[condition].is_smallest(10)  # Hold top 10

# Entry/exit signals with hold_until
entries = close > close.average(20)
exits = close < close.average(60)
position = entries.hold_until(exits, nstocks_limit=10, rank=-pb)

Important: Position DataFrame should have:

  • Index: DatetimeIndex (dates)
  • Columns: Stock IDs (e.g., '2330', '1101')
  • Values: Boolean (True = hold) or numeric (position size)

Step 4: Backtest

from finlab.backtest import sim

# Basic backtest
report = sim(position, resample="M")

# With risk management
report = sim(
    position,
    resample="M",
    stop_loss=0.08,
    take_profit=0.15,
    trail_stop=0.05,
    position_limit=1/3,
    fee_ratio=1.425/1000/3,
    tax_ratio=3/1000,
    trade_at_price='open',
    upload=False
)

# Extract metrics - Two ways:
# Option A: Using metrics object
print(f"Annual Return: {report.metrics.annual_return():.2%}")
print(f"Sharpe Ratio: {report.metrics.sharpe_ratio():.2f}")
print(f"Max Drawdown: {report.metrics.max_drawdown():.2%}")

# Option B: Using get_stats() dictionary (note: different key names!)
stats = report.get_stats()
print(f"CAGR: {stats['cagr']:.2%}")           # 'cagr' not 'annual_return'
print(f"Sharpe: {stats['monthly_sharpe']:.2f}") # 'monthly_sharpe' not 'sharpe_ratio'
print(f"MDD: {stats['max_drawdown']:.2%}")     # same name

See backtesting-reference.md for complete sim() API.

Step 5: Execute Orders (Optional)

Convert backtest results to live trading:

from finlab.online.order_executor import Position, OrderExecutor
from finlab.online.sinopac_account import SinopacAccount

# 1. Convert report to position
position = Position.from_report(report, fund=1000000)

# 2. Connect broker account
acc = SinopacAccount()

# 3. Create executor and preview orders
executor = OrderExecutor(position, account=acc)
executor.create_orders(view_only=True)  # Preview first

# 4. Execute orders (when ready)
executor.create_orders()

See trading-reference.md for complete broker setup and OrderExecutor API.

Documentation Structure

This skill includes comprehensive reference documentation:

When to Use Each Reference

Task Reference File
Find available data sources data-reference.md
Fetch price, revenue, financial statement data data-reference.md
Filter stocks by industry/market data-reference.md
Configure backtest parameters backtesting-reference.md
Set stop-loss, take-profit, rebalancing backtesting-reference.md
Execute orders to broker trading-reference.md
Setup broker account (Esun/Sinopac/Masterlink/Fubon) trading-reference.md
Calculate position from backtest trading-reference.md
Find strategy examples factor-examples.md
Calculate moving averages, trends dataframe-reference.md
Select top N stocks dataframe-reference.md
Combine entry/exit signals dataframe-reference.md
Analyze factor performance factor-analysis-reference.md
Avoid common mistakes best-practices.md
Prevent lookahead bias best-practices.md
Build ML models for trading machine-learning-reference.md

Common Use Cases

Use Case 1: Value + Momentum Strategy

from finlab import data
from finlab.backtest import sim

# Value: Low P/B ratio
pb = data.get("price_earning_ratio:股價淨值比")
low_pb = pb.rank(axis=1, pct=True) < 0.3

# Momentum: Rising price
close = data.get("price:收盤價")
momentum = close.rise(20)

# Liquidity filter
vol = data.get("price:成交股數")
liquid = vol.average(20) > 500*1000

# Combine
position = low_pb & momentum & liquid
position = pb[position].is_smallest(15)

report = sim(position, resample="M", stop_loss=0.1)

Use Case 2: Monthly Revenue Growth Strategy

from finlab import data
from finlab.backtest import sim

rev = data.get("monthly_revenue:當月營收")
rev_growth = data.get("monthly_revenue:去年同月增減(%)")

# Revenue at new high
rev_ma3 = rev.average(3)
rev_high = (rev_ma3 / rev_ma3.rolling(12).max()) == 1

# Strong growth
strong_growth = (rev_growth > 20).sustain(3)

position = rev_high & strong_growth
position = rev_growth[position].is_largest(10)

# Use monthly revenue index for rebalancing
position_resampled = position.reindex(rev.index_str_to_date().index, method="ffill")
report = sim(position_resampled)

Use Case 3: Technical Indicator Strategy

from finlab import data
from finlab.backtest import sim

close = data.get("price:收盤價")
rsi = data.indicator("RSI", timeperiod=14)

# RSI golden cross
rsi_short = data.indicator("RSI", timeperiod=7)
rsi_long = data.indicator("RSI", timeperiod=21)
golden_cross = (rsi_short > rsi_long) & (rsi_short.shift() < rsi_long.shift())

# Above moving average
sma60 = close.average(60)
uptrend = close > sma60

position = golden_cross & uptrend & (rsi < 70)
position = position[position].is_smallest(20)

report = sim(position, resample="W")

Key Concepts

FinLabDataFrame Automatic Alignment

FinLabDataFrame automatically aligns indices and columns during operations:

close = data.get("price:收盤價")  # Daily data
revenue = data.get("monthly_revenue:當月營收")  # Monthly data

# Automatically aligns - no manual reindexing needed
position = close > close.average(60) & (revenue > revenue.shift(1))

Prevent Future Data Pollution

Critical: Avoid lookahead bias (using future data to make past decisions):

# ✅ GOOD: Use shift(1) to get previous value
prev_close = close.shift(1)

# ❌ BAD: Don't use iloc[-2] (can cause lookahead)
# prev_close = close.iloc[-2]  # WRONG

# ✅ GOOD: Leave index as-is even with strings like "2025Q1"
# FinLabDataFrame aligns by shape automatically

# ❌ BAD: Don't manually assign to df.index
# df.index = new_index  # FORBIDDEN

See best-practices.md for comprehensive anti-patterns.

Installation & Setup

See Prerequisites section for API token and installation verification.

# Common imports
from finlab import data
from finlab.backtest import sim
from finlab.dataframe import FinLabDataFrame

Getting Help

Notes

  • All strategy code examples use Traditional Chinese (繁體中文) variable names where appropriate
  • This package is specifically designed for Taiwan stock market (TSE/OTC)
  • Data frequency varies: daily (price), monthly (revenue), quarterly (financial statements)
  • Always use sim(..., upload=False) for experiments, upload=True only for final production strategies