| name | bigquery |
| description | Use bigquery CLI (instead of `bq`) for all Google BigQuery and GCP data warehouse operations including SQL query execution, data ingestion (streaming insert, bulk load, JSONL/CSV/Parquet), data extraction/export, dataset/table/view management, external tables, schema operations, query templates, cost estimation with dry-run, authentication with gcloud, data pipelines, ETL workflows, and MCP/LSP server integration for AI-assisted querying and editor support. Modern Rust-based replacement for the Python `bq` CLI with faster startup, better cost awareness, and streaming support. Handles both small-scale streaming inserts (<1000 rows) and large-scale bulk loading (>10MB files), with support for Cloud Storage integration. |
BigQuery CLI Skill
You are a BigQuery specialist using the bigquery CLI tool. This skill provides comprehensive guidance for working with Google BigQuery through a unified Rust-based CLI with query execution, template management, and server modes.
Core Capabilities
The bigquery CLI provides:
- Authentication: Check status and login with gcloud
- Query Execution: Run SQL queries with cost awareness and confirmation prompts
- Dry Run: Estimate query costs without execution
- Dataset Operations: List datasets in a project
- Table Operations: List, describe, insert, load, and manage external tables
- Template System: Named query templates with parameter substitution
- MCP Server: Semantic search via stdio or HTTP modes
- LSP Server: SQL language server for editor integration
Authentication
Check Authentication Status
# Check if authenticated and verify required scopes
bigquery auth check
# Will show:
# - Authentication status
# - Active account
# - BigQuery scopes availability
Login with gcloud
# Authenticate with gcloud including all required BigQuery scopes
bigquery auth login
# This will:
# 1. Run gcloud auth login
# 2. Ensure all necessary BigQuery scopes are granted
# 3. Verify authentication succeeded
Best Practice: Always run bigquery auth check first to verify authentication before operations.
Query Operations
Running Queries
# Basic query execution (interactive cost confirmation)
bigquery query "SELECT * FROM dataset.table LIMIT 10"
# Skip cost confirmation for automation
bigquery query --yes "SELECT COUNT(*) FROM dataset.table"
# JSON output (default)
bigquery query "SELECT * FROM dataset.table LIMIT 5"
# Text/table output
bigquery query --format text "SELECT * FROM dataset.table LIMIT 5"
Cost Awareness: The query command automatically:
- Estimates query cost before execution
- Displays bytes to be processed
- Prompts for confirmation (unless
--yesis used) - Prevents accidental expensive queries
Query Output Formats
# JSON output (default, machine-readable)
bigquery query "SELECT * FROM dataset.table"
bigquery query --format json "SELECT * FROM dataset.table"
# Text output (human-readable table)
bigquery query --format text "SELECT * FROM dataset.table"
Dry Run (Cost Estimation)
# Estimate cost without executing
bigquery dry-run "SELECT * FROM large_dataset.table WHERE date >= '2025-01-01'"
# Returns:
# - Bytes that would be processed
# - Estimated cost
# - No actual data
Use dry-run to:
- Estimate costs before running expensive queries
- Validate query syntax
- Check partition pruning effectiveness
- Test queries in CI/CD pipelines
Dataset Operations
Listing Datasets
# List datasets in current project (text format, default)
bigquery datasets list my-project
# JSON output
bigquery datasets list my-project --format json
# Example output shows:
# - Dataset ID
# - Location
# - Creation time
# - Labels (if any)
Note: Dataset reference format is project.dataset or just project to list all datasets.
Table Operations
Listing Tables
# List tables in a dataset (text format, first 10)
bigquery tables list my-project.my-dataset
# JSON output
bigquery tables list my-project.my-dataset --format json
# Limit results
bigquery tables list my-project.my-dataset --limit 20
# Maximum limit is 100
bigquery tables list my-project.my-dataset --limit 100
Describing Table Schema
# Show table schema and metadata (text format)
bigquery tables describe my-project.my-dataset.my-table
# JSON output
bigquery tables describe my-project.my-dataset.my-table --format json
# Output includes:
# - Column names and types
# - Nullability (NULLABLE, REQUIRED, REPEATED)
# - Mode information
# - Table metadata
Inserting Rows (Small Datasets)
Best for <1000 rows. Uses streaming insert API for immediate availability.
JSONL (Newline-Delimited JSON) Format
From JSONL File:
# Create sample JSONL file
cat > users.jsonl <<EOF
{"id": "1", "name": "Alice Johnson", "email": "alice@example.com", "age": 30}
{"id": "2", "name": "Bob Smith", "email": "bob@example.com", "age": 25}
{"id": "3", "name": "Charlie Brown", "email": "charlie@example.com", "age": 35}
EOF
# Insert from JSONL file
bigquery tables insert my-project.dataset.users \
--data users.jsonl --format json
From JSONL Stream (stdin):
# Stream from command output
echo '{"id": "1", "name": "Alice", "email": "alice@example.com"}' | \
bigquery tables insert my-project.dataset.users --data - --format json
# Stream from multiple sources (heredoc)
cat << EOF | bigquery tables insert my-project.dataset.users --data - --format json
{"id": "1", "name": "Alice", "email": "alice@example.com", "age": 30}
{"id": "2", "name": "Bob", "email": "bob@example.com", "age": 25}
{"id": "3", "name": "Charlie", "email": "charlie@example.com", "age": 35}
EOF
# Stream from application output
my-etl-tool --output jsonl | bigquery tables insert my-project.dataset.events --data -
# Stream from compressed file
gunzip -c logs.jsonl.gz | bigquery tables insert my-project.dataset.logs --data -
# Stream from jq transformation
cat raw_data.json | jq -c '.records[]' | \
bigquery tables insert my-project.dataset.processed --data -
JSONL Format Requirements:
- Each line is a separate JSON object
- Empty lines are automatically skipped
- No commas between objects
- Ideal for streaming and large datasets
- Format:
{"field1":"value1","field2":"value2"}\n
CSV Format
From CSV File:
# Create sample CSV file
cat > users.csv <<EOF
id,name,email,age
1,Alice Johnson,alice@example.com,30
2,Bob Smith,bob@example.com,25
3,"Charlie Brown, Jr.",charlie@example.com,35
EOF
# Insert from CSV file
bigquery tables insert my-project.dataset.users \
--data users.csv --format csv
From CSV Stream (stdin):
# Stream from heredoc
cat << EOF | bigquery tables insert my-project.dataset.users --data - --format csv
id,name,email,age
1,Alice Johnson,alice@example.com,30
2,Bob Smith,bob@example.com,25
3,Charlie Brown,charlie@example.com,35
EOF
# Stream from application output
./generate_report.sh | bigquery tables insert my-project.dataset.reports --data - --format csv
# Stream from compressed CSV
gunzip -c data.csv.gz | bigquery tables insert my-project.dataset.imports --data -
# Stream from curl/API response
curl -s https://api.example.com/export.csv | \
bigquery tables insert my-project.dataset.api_data --data - --format csv
# Transform and stream CSV
cat raw.csv | tail -n +2 | awk '{print tolower($0)}' | \
bigquery tables insert my-project.dataset.cleaned --data - --format csv
CSV Format Requirements:
- First row must contain column headers matching BigQuery table schema
- Values are inserted as strings (BigQuery will coerce types)
- Supports quoted fields, escaped quotes, and newlines (RFC 4180 compliant)
- Headers are case-sensitive and must match table column names
Additional Insert Options
# Insert inline JSON (single object)
bigquery tables insert my-project.dataset.users \
--json '{"id": "1", "name": "Alice", "email": "alice@example.com"}'
# Insert inline JSON array
bigquery tables insert my-project.dataset.users \
--json '[{"id": "1", "name": "Alice"}, {"id": "2", "name": "Bob"}]'
# Dry-run validation (no data inserted)
bigquery tables insert my-project.dataset.users \
--data users.csv --format csv --dry-run
# Skip invalid rows instead of failing
bigquery tables insert my-project.dataset.users \
--data users.csv --format csv --skip-invalid
# Ignore unknown fields in data
bigquery tables insert my-project.dataset.users \
--data users.csv --format csv --ignore-unknown
# Combine options for production pipelines
cat production_data.jsonl | \
bigquery tables insert my-project.dataset.production \
--data - --format json \
--skip-invalid \
--ignore-unknown
Insert Options:
--json <JSON>: Inline JSON data (object or array)--data <PATH>: Path to data file, or-for stdin--format <FORMAT>: Data format (json or csv, default: json)--dry-run: Validate without inserting--skip-invalid: Skip invalid rows instead of failing--ignore-unknown: Ignore unknown fields in data--yes: Skip confirmation prompts
Loading Data (Large Datasets)
Best for >10MB files or >1000 rows. Uses BigQuery load jobs.
⚠️ IMPORTANT: Local file loading requires GCS staging bucket configuration.
- If you get "The specified bucket does not exist" error, use
tables insertfor datasets <1000 rows instead - For larger datasets, upload to GCS first, then use
bigquery tables load gs://...
# Load from Cloud Storage URI (RECOMMENDED - no bucket config needed)
bigquery tables load my-project.dataset.users \
gs://my-bucket/data.csv --format csv
# Load from local CSV file (requires GCS staging bucket configured)
bigquery tables load my-project.dataset.users data.csv --format csv
# Load with schema auto-detection
bigquery tables load my-project.dataset.new_table data.csv \
--format csv --autodetect
# Load with replace write disposition (truncates table first)
bigquery tables load my-project.dataset.users data.csv \
--format csv --write-disposition replace
# Load JSON file
bigquery tables load my-project.dataset.events events.json \
--format json
# Supported formats: csv, json, avro, parquet, orc
bigquery tables load my-project.dataset.table data.parquet \
--format parquet
# Dry-run validation (no data loaded)
bigquery tables load my-project.dataset.users data.csv \
--format csv --dry-run
# Allow some bad records (skip up to 100 invalid rows)
bigquery tables load my-project.dataset.users data.csv \
--format csv --max-bad-records 100
# Ignore unknown fields
bigquery tables load my-project.dataset.users data.csv \
--format csv --ignore-unknown
# Skip confirmation prompts (for automation/CI)
bigquery tables load my-project.dataset.users data.csv \
--format csv --write-disposition replace --yes
Load Job Features:
- GCS Staging Bucket Required: Local file loading needs GCS bucket configuration
- Real-time progress tracking with exponential backoff
- Automatic cleanup of temporary files after completion
- Write modes:
append(default) orreplace(truncate first) - Safety confirmations for destructive operations
- Configurable error tolerance with
--max-bad-records
When to Use:
- Large datasets (>1000 rows or >10MB)
- Data already in Cloud Storage
- Bulk data migrations
When NOT to Use:
- Small datasets (<1000 rows) → Use
tables insertinstead (no GCS required) - Don't have GCS staging bucket configured → Use
tables insertor upload to GCS first
Load Options:
--format <FORMAT>: csv, json, avro, parquet, orc (default: csv)--write-disposition <DISPOSITION>: append or replace (default: append)--autodetect: Auto-detect schema from source files--dry-run: Validate without loading--max-bad-records <N>: Maximum bad records before failing--ignore-unknown: Ignore unknown fields--yes: Skip confirmation prompts
Extracting Data
Export table data to Cloud Storage in various formats:
# Extract table to Cloud Storage as CSV
bigquery tables extract my-project.dataset.users \
gs://my-bucket/exports/users.csv --format csv
# Extract as JSON
bigquery tables extract my-project.dataset.events \
gs://my-bucket/exports/events-*.json --format json
# Extract with compression
bigquery tables extract my-project.dataset.large_table \
gs://my-bucket/exports/data-*.csv.gz --format csv --compression gzip
# Extract as Avro with Snappy compression
bigquery tables extract my-project.dataset.events \
gs://my-bucket/exports/events-*.avro --format avro --compression snappy
# Extract as Parquet
bigquery tables extract my-project.dataset.analytics \
gs://my-bucket/exports/analytics.parquet --format parquet
# CSV with custom delimiter and header
bigquery tables extract my-project.dataset.data \
gs://my-bucket/data.csv \
--format csv \
--field-delimiter "|" \
--print-header
# Dry-run to validate configuration
bigquery tables extract my-project.dataset.users \
gs://my-bucket/users.csv --format csv --dry-run
# Skip confirmation prompt
bigquery tables extract my-project.dataset.large \
gs://my-bucket/export.csv --format csv --yes
Supported Formats: CSV, JSON (newline-delimited), Avro, Parquet Compression: none, gzip, snappy (Avro/Parquet only)
External Tables
External tables reference data in Cloud Storage without copying it to BigQuery.
Creating External Tables
# Create CSV external table
bigquery tables create-external my-project.dataset.external_table \
--source-uri gs://bucket/data.csv \
--format csv \
--schema "id:INTEGER,name:STRING,created_at:TIMESTAMP"
# Create with auto-detected schema
bigquery tables create-external my-project.dataset.external_table \
--source-uri gs://bucket/data.csv \
--format csv \
--autodetect
# Multiple source URIs (comma-separated)
bigquery tables create-external my-project.dataset.external_table \
--source-uri "gs://bucket/file1.csv,gs://bucket/file2.csv" \
--format csv \
--autodetect
# Multiple source URIs (multiple flags)
bigquery tables create-external my-project.dataset.external_table \
--source-uri gs://bucket/file1.csv \
--source-uri gs://bucket/file2.csv \
--format csv \
--autodetect
# CSV-specific options
bigquery tables create-external my-project.dataset.external_table \
--source-uri gs://bucket/data.csv \
--format csv \
--schema "id:INTEGER,name:STRING" \
--field-delimiter "," \
--skip-leading-rows 1
# Other formats (Parquet, JSON, Avro, ORC)
bigquery tables create-external my-project.dataset.parquet_table \
--source-uri gs://bucket/data.parquet \
--format parquet \
--autodetect
bigquery tables create-external my-project.dataset.json_table \
--source-uri gs://bucket/data.jsonl \
--format json \
--autodetect
External Table Options:
--source-uri <URI>: Cloud Storage URI(s) - required--format <FORMAT>: csv, json, avro, parquet, orc - required--schema <SCHEMA>: Schema definition (column:type,column:type,...)--autodetect: Auto-detect schema from source files--field-delimiter <DELIMITER>: CSV field delimiter (default: ,)--skip-leading-rows <N>: CSV header rows to skip
Updating External Tables
# Update source URIs
bigquery tables update-external my-project.dataset.external_table \
--source-uri gs://bucket/new-data.csv
# Update schema
bigquery tables update-external my-project.dataset.external_table \
--schema "id:INTEGER,name:STRING,email:STRING"
# Update CSV options
bigquery tables update-external my-project.dataset.external_table \
--field-delimiter "|" \
--skip-leading-rows 2
# Update multiple properties
bigquery tables update-external my-project.dataset.external_table \
--source-uri gs://bucket/new-data.csv \
--schema "id:INTEGER,name:STRING,updated_at:TIMESTAMP" \
--skip-leading-rows 1
Template System
Named query templates allow you to save frequently-used queries with parameter placeholders.
Listing Templates
# List all available templates (text format)
bigquery templates list
# JSON output
bigquery templates list --format json
# Shows:
# - Template name
# - Description
# - Parameters
# - Query preview
Searching Templates
# Search by name or description
bigquery templates search "customer"
bigquery templates search "daily metrics"
# JSON output
bigquery templates search "analytics" --format json
Validating Templates
# Validate template for parameter consistency
bigquery templates validate my-template
# Checks:
# - Parameter definitions match query placeholders
# - Required parameters are defined
# - Parameter types are valid
Running Templates
# Run template with default parameters
bigquery templates run my-template
# Override parameters
bigquery templates run daily-report \
--param date=2025-01-15 \
--param region=US
# Multiple parameters
bigquery templates run customer-analysis \
--param customer_id=CUST123 \
--param start_date=2025-01-01 \
--param end_date=2025-01-31
# JSON output
bigquery templates run my-template --format json
# Skip cost confirmation
bigquery templates run expensive-query --yes
Template Run Options:
--param <KEY=VALUE>: Parameter override (can be used multiple times)--format <FORMAT>: Output format (json or text, default: json)--yes: Skip cost confirmation prompt
Template Workflow Example
# 1. Search for templates
bigquery templates search "revenue"
# 2. Validate template before running
bigquery templates validate monthly-revenue
# 3. Run with parameters
bigquery templates run monthly-revenue \
--param month=2025-01 \
--param min_amount=1000
# 4. Run in automation (skip confirmation)
bigquery templates run monthly-revenue \
--param month=2025-01 \
--yes \
--format json > output.json
Use templates for:
- Standardized reporting queries
- Common analytics patterns
- Scheduled data pipelines
- Team query sharing
- Reducing query errors
MCP Server Integration
The BigQuery MCP server provides semantic search and natural language query capabilities via Model Context Protocol.
Starting MCP Server
STDIO Mode (for local clients):
# Start MCP server in stdio mode
bigquery mcp stdio
# Server will:
# - Accept MCP protocol messages on stdin
# - Send responses on stdout
# - Expose BigQuery tools to MCP clients
HTTP Mode (for network clients):
# Start HTTP MCP server on default port 8080
bigquery mcp http
# Specify custom port
bigquery mcp http --port 3000
# Server provides:
# - HTTP endpoint for MCP protocol
# - JSON-RPC over HTTP
# - Remote access to BigQuery tools
MCP Server Capabilities
The MCP server exposes these tools through the Model Context Protocol:
- semantic_search: Search tables using natural language
- execute_query: Run SQL queries with automatic formatting
- get_schema: Retrieve table schemas
- list_tables: List available tables
- list_datasets: List available datasets
- explain_query: Get query execution plan
- optimize_query: Suggest query optimizations
- run_template: Execute named templates with parameters
MCP Configuration
Configure in Claude Code or other MCP-enabled applications:
STDIO Mode (.claude/mcp.json or similar):
{
"mcpServers": {
"bigquery": {
"command": "bigquery",
"args": ["mcp", "stdio"],
"env": {
"GOOGLE_CLOUD_PROJECT": "my-project"
}
}
}
}
HTTP Mode:
{
"mcpServers": {
"bigquery": {
"url": "http://localhost:8080",
"transport": "http"
}
}
}
MCP Usage Patterns
When using BigQuery MCP through clients:
Semantic Search:
"Find all tables containing customer purchase data from the last 30 days"
→ MCP translates to appropriate SQL query
Schema Discovery:
"What columns are in the analytics.events table?"
→ MCP returns schema information
Natural Language Queries:
"Show me total revenue by region for Q1 2025"
→ MCP generates and executes SQL
Template Execution:
"Run the monthly revenue template for January 2025"
→ MCP executes template with parameters
LSP Integration
The BigQuery LSP provides SQL language features in text editors.
Starting LSP Server
# Start LSP server
bigquery lsp
# Server provides:
# - Language Server Protocol communication
# - SQL syntax validation
# - Schema-aware completions
# - Query formatting
# - Hover documentation
LSP Features
- SQL syntax highlighting: Proper tokenization and highlighting
- Schema completion: Table and column suggestions based on project schema
- Query validation: Real-time syntax and semantic checks
- Hover documentation: Table and column info on hover
- Go to definition: Navigate to table definitions
- Query formatting: Auto-format SQL queries
- Diagnostics: Show errors and warnings inline
Editor Configuration
Neovim:
-- In nvim/lua/bigquery-lsp.lua or init.lua
vim.api.nvim_create_autocmd("FileType", {
pattern = { "sql", "bq", "bigquery" },
callback = function()
vim.lsp.start({
name = "bigquery-lsp",
cmd = { "bigquery", "lsp" },
root_dir = vim.fn.getcwd(),
})
end,
})
VS Code (in settings.json or language server config):
{
"bigquery-lsp": {
"command": "bigquery",
"args": ["lsp"],
"filetypes": ["sql", "bq", "bigquery"]
}
}
Helix (in languages.toml):
[[language]]
name = "sql"
language-servers = ["bigquery-lsp"]
[language-server.bigquery-lsp]
command = "bigquery"
args = ["lsp"]
Common Workflows
Workflow 1: Exploratory Data Analysis
# 1. Verify authentication
bigquery auth check
# 2. List available datasets
bigquery datasets list my-project
# 3. List tables in dataset
bigquery tables list my-project.analytics
# 4. Check table schema
bigquery tables describe my-project.analytics.events
# 5. Preview data (text format for readability)
bigquery query --format text \
"SELECT * FROM my-project.analytics.events LIMIT 10"
# 6. Get row count
bigquery query "SELECT COUNT(*) as total FROM my-project.analytics.events"
# 7. Check data distribution
bigquery query --format text "
SELECT
DATE(timestamp) as date,
COUNT(*) as events
FROM my-project.analytics.events
GROUP BY date
ORDER BY date DESC
LIMIT 30
"
Workflow 2: Cost-Aware Query Development
# 1. Dry run to estimate cost
bigquery dry-run "
SELECT *
FROM my-project.large_dataset.table
WHERE date >= '2025-01-01'
"
# 2. If cost is acceptable, run query
bigquery query "
SELECT *
FROM my-project.large_dataset.table
WHERE date >= '2025-01-01'
"
# 3. For automation, skip confirmation
bigquery query --yes "
SELECT *
FROM my-project.large_dataset.table
WHERE date >= '2025-01-01'
" > results.json
Workflow 3: Template-Based Reporting
# 1. Search for relevant templates
bigquery templates search "daily"
# 2. Validate template
bigquery templates validate daily-metrics
# 3. Run template with parameters
bigquery templates run daily-metrics \
--param date=$(date +%Y-%m-%d) \
--param region=US \
--format json > daily-report.json
# 4. Schedule in cron or CI/CD
# 0 1 * * * bigquery templates run daily-metrics --param date=$(date +%Y-%m-%d) --yes
Workflow 4: External Data Analysis
# 1. Create external table pointing to GCS
bigquery tables create-external my-project.staging.raw_logs \
--source-uri gs://logs-bucket/2025-01-*.json \
--format json \
--autodetect
# 2. Query external table
bigquery query "
SELECT
timestamp,
user_id,
action
FROM my-project.staging.raw_logs
WHERE action = 'purchase'
LIMIT 100
"
# 3. Update external table when new files arrive
bigquery tables update-external my-project.staging.raw_logs \
--source-uri gs://logs-bucket/2025-02-*.json
Workflow 5: Data Loading Pipeline
# 1. Load initial data
bigquery tables load my-project.dataset.events \
gs://bucket/events-2025-01-01.csv \
--format csv \
--write-disposition replace
# 2. Append incremental data
bigquery tables load my-project.dataset.events \
gs://bucket/events-2025-01-02.csv \
--format csv \
--write-disposition append
# 3. Verify data loaded
bigquery query "
SELECT
DATE(timestamp) as date,
COUNT(*) as count
FROM my-project.dataset.events
GROUP BY date
ORDER BY date
"
Workflow 6: Real-Time Data Insertion
# 1. Insert single event (inline JSON)
bigquery tables insert my-project.dataset.events \
--json '{"user_id": "U123", "event": "click", "timestamp": "2025-01-15T10:00:00Z"}'
# 2. Stream JSONL from application
my-app --output jsonl | bigquery tables insert my-project.dataset.events --data - --format json
# 3. Insert batch from JSONL file
bigquery tables insert my-project.dataset.events \
--data events.jsonl --format json
# 4. Stream with transformation and error handling
cat raw_events.json | jq -c '.events[]' | \
bigquery tables insert my-project.dataset.events \
--data - --format json \
--skip-invalid \
--ignore-unknown
Best Practices
Query Development
- Always dry-run first: Use
bigquery dry-runto estimate costs - Use templates: Create templates for repeated queries
- Validate before running: Check syntax and cost before execution
- Use text format for exploration:
--format textfor human-readable tables - Use JSON for automation:
--format jsonfor machine processing - Skip confirmations in scripts: Use
--yesflag for automation
Cost Management
- Dry run expensive queries: Always estimate with
bigquery dry-run - Monitor bytes processed: Check query cost estimates before running
- Use partition pruning: Filter on partitioned columns in WHERE clauses
- Limit result sets: Use LIMIT for exploratory queries
- Use templates: Standardize queries to avoid mistakes
- Leverage external tables: Avoid copying data when querying directly from GCS
Authentication
- Check auth first: Run
bigquery auth checkbefore operations - Use service accounts: For automation and CI/CD
- Verify scopes: Ensure all required BigQuery scopes are granted
- Re-authenticate when needed:
bigquery auth loginif check fails
Template Management
- Use descriptive names: Make templates easy to find
- Document parameters: Include parameter descriptions in templates
- Validate before use: Run
bigquery templates validatebefore execution - Search before creating: Check if similar template exists
- Version control templates: Store template definitions in git
Data Loading
- Choose the right method:
- Use
insertfor <1000 rows (streaming insert API, immediate availability) - Use
loadfor >10MB files or >1000 rows (load jobs with GCS upload)
- Use
- Use JSONL for streaming: Newline-delimited JSON is ideal for streaming pipelines
- Stream from stdin: Use
--data -to pipe data from applications or transformations - Validate before loading: Use
--dry-runflag to test configurations - Handle bad records: Set
--max-bad-recordsfor messy data - Choose write disposition:
replacefor full refresh,appendfor incremental - Use external tables: For data that changes frequently in GCS (no data copying)
- Use appropriate formats: CSV for simple data, JSON/JSONL for complex, Parquet/Avro for large datasets
MCP Server
- Use stdio for local: Prefer stdio mode for local MCP clients
- Use HTTP for remote: Use HTTP mode for networked deployments
- Secure HTTP endpoints: Put HTTP server behind authentication/firewall
- Monitor server logs: Check for errors and performance issues
- Set appropriate port: Choose non-conflicting port for HTTP mode
LSP Integration
- Configure per-project: Set up LSP for SQL files in your editor
- Use schema completion: Leverage auto-complete for table/column names
- Check diagnostics: Fix errors and warnings shown inline
- Format queries: Use LSP formatting for consistent style
Configuration
Environment Variables
# Set default project
export GOOGLE_CLOUD_PROJECT=my-project
# Set credentials (for service accounts)
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/service-account.json
# Add to ~/.zshrc or ~/.bashrc for persistence
echo 'export GOOGLE_CLOUD_PROJECT=my-project' >> ~/.zshrc
Authentication Methods
User Credentials (interactive):
bigquery auth login
# Opens browser for Google authentication
Service Account (automation):
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/sa-key.json
bigquery auth check
Application Default Credentials (gcloud):
gcloud auth application-default login
bigquery auth check
Troubleshooting
Issue: "Not authenticated" or "Permission denied"
Solution: Check authentication and scopes
# Check current auth status
bigquery auth check
# Re-authenticate if needed
bigquery auth login
# Verify gcloud is set to correct project
gcloud config get-value project
# Set project if needed
gcloud config set project my-project
Issue: "Table not found"
Solution: Use fully qualified table names
# Wrong - missing project/dataset
bigquery query "SELECT * FROM table"
# Correct - fully qualified
bigquery query "SELECT * FROM my-project.my-dataset.my-table"
# Or use backticks for reserved words
bigquery query "SELECT * FROM \`my-project.my-dataset.my-table\`"
Issue: "Query too expensive"
Solution: Check cost with dry-run and optimize
# Check estimated cost
bigquery dry-run "SELECT * FROM large_table WHERE date >= '2025-01-01'"
# Optimize with partition filters
bigquery dry-run "
SELECT * FROM large_table
WHERE _PARTITIONDATE = '2025-01-15'
"
Issue: "Template not found"
Solution: Search for templates and verify name
# List all templates
bigquery templates list
# Search for template
bigquery templates search "keyword"
# Use exact template name
bigquery templates run exact-template-name
Issue: "The specified bucket does not exist"
Cause: bigquery tables load with a local file requires GCS staging bucket configuration.
Solutions:
Preferred for small datasets (<1000 rows): Use
tables insertinstead (no GCS required)bigquery tables insert my-project.dataset.table \ --data /tmp/data.jsonl \ --format jsonFor larger datasets: Upload to GCS first, then load
gsutil cp /tmp/large-file.jsonl gs://my-bucket/ bigquery tables load my-project.dataset.table \ gs://my-bucket/large-file.jsonl \ --format jsonLast resort: Configure GCS staging bucket in BigQuery CLI config (requires additional setup)
Issue: "Invalid schema"
Solution: Check schema format for external tables
# Schema format: column:type,column:type,...
bigquery tables create-external my-project.dataset.table \
--source-uri gs://bucket/file.csv \
--format csv \
--schema "id:INTEGER,name:STRING,created_at:TIMESTAMP"
# Or use autodetect
bigquery tables create-external my-project.dataset.table \
--source-uri gs://bucket/file.csv \
--format csv \
--autodetect
Issue: "MCP server not responding"
Solution: Check server mode and connectivity
# For stdio mode, ensure client is using stdio transport
bigquery mcp stdio
# For HTTP mode, check port and firewall
bigquery mcp http --port 8080
# Test HTTP endpoint
curl http://localhost:8080
Issue: "LSP not starting in editor"
Solution: Verify LSP configuration and binary path
# Check bigquery is in PATH
which bigquery
# Test LSP manually
bigquery lsp
# Verify editor configuration points to correct command
# Neovim: check cmd = { "bigquery", "lsp" }
# VS Code: check "command": "bigquery", "args": ["lsp"]
Quick Reference
# Authentication
bigquery auth check # Check auth status
bigquery auth login # Login with gcloud
# Queries
bigquery query "SELECT ..." # Execute query
bigquery query --yes "SELECT ..." # Skip confirmation
bigquery query --format text "SELECT ..." # Table output
bigquery dry-run "SELECT ..." # Estimate cost
# Datasets
bigquery datasets list PROJECT # List datasets
# Tables
bigquery tables list PROJECT.DATASET # List tables
bigquery tables describe PROJECT.DATASET.TABLE # Show schema
bigquery tables insert TABLE --json '{"id": 1}' # Insert rows (inline)
bigquery tables insert TABLE --data file.jsonl --format json # Insert from JSONL
cat data.jsonl | bigquery tables insert TABLE --data - # Stream insert
bigquery tables load TABLE file.csv # Load data (bulk)
bigquery tables load TABLE gs://bucket/file.csv # Load from GCS
bigquery tables extract TABLE gs://bucket/output.csv # Extract to GCS
bigquery tables create-external TABLE --source-uri ... # External table
bigquery tables update-external TABLE --source-uri ... # Update external
# Templates
bigquery templates list # List templates
bigquery templates search "keyword" # Search templates
bigquery templates validate TEMPLATE # Validate template
bigquery templates run TEMPLATE --param key=value # Run template
# MCP Server
bigquery mcp stdio # Start MCP (stdio mode)
bigquery mcp http # Start MCP (HTTP mode)
bigquery mcp http --port 3000 # Custom port
# LSP Server
bigquery lsp # Start LSP server
Integration Examples
CI/CD Pipeline
#!/bin/bash
# daily-etl.sh
# Authenticate with service account
export GOOGLE_APPLICATION_CREDENTIALS=/secrets/sa-key.json
bigquery auth check || exit 1
# Run daily ETL template
bigquery templates run daily-etl \
--param date=$(date +%Y-%m-%d) \
--yes \
--format json > /tmp/etl-result.json
# Check result
if [ $? -eq 0 ]; then
echo "ETL completed successfully"
else
echo "ETL failed"
exit 1
fi
Data Quality Checks
#!/bin/bash
# check-data-quality.sh
# Run data quality template
RESULT=$(bigquery templates run data-quality-check \
--param table=my-project.dataset.table \
--yes \
--format json)
# Parse result and check quality metrics
INVALID_ROWS=$(echo $RESULT | jq '.invalid_rows')
if [ "$INVALID_ROWS" -gt 100 ]; then
echo "Data quality check failed: $INVALID_ROWS invalid rows"
exit 1
else
echo "Data quality check passed"
fi
Scheduled Reporting
#!/bin/bash
# generate-report.sh
# Generate weekly report
bigquery templates run weekly-revenue-report \
--param week_start=$(date -d "last monday" +%Y-%m-%d) \
--param week_end=$(date -d "next sunday" +%Y-%m-%d) \
--yes \
--format json > /reports/weekly-$(date +%Y-%m-%d).json
# Upload to GCS
gsutil cp /reports/weekly-*.json gs://reports-bucket/
Summary
Primary commands:
bigquery auth {check,login}- Authentication managementbigquery query- Execute SQL with cost awarenessbigquery dry-run- Estimate query costsbigquery datasets list- List datasetsbigquery tables {list,describe,insert,load,extract,create-external,update-external}- Table operationsbigquery templates {list,search,validate,run}- Named templatesbigquery mcp {stdio,http}- MCP server modesbigquery lsp- LSP server
Key features:
- Cost-aware query execution with confirmation prompts
- Named query templates with parameter substitution
- Streaming insert API for real-time data (<1000 rows)
- Bulk load jobs for large datasets (>10MB or >1000 rows)
- JSONL streaming support with stdin (
--data -) - Data extraction to Cloud Storage (CSV, JSON, Avro, Parquet)
- External table support for GCS data
- MCP server with stdio and HTTP modes
- LSP integration for editor support
Best practices:
- Always check authentication first with
auth check - Use
dry-runto estimate costs before expensive queries - Create templates for frequently-used queries
- Use
--yesflag for automation and CI/CD - Use
insertfor <1000 rows,loadfor larger datasets - Use JSONL format for streaming pipelines
- Stream from stdin with
--data -for data transformations - Use external tables to avoid data duplication
- Configure MCP for natural language query capabilities
- Set up LSP in your editor for SQL development
MCP Integration:
- Semantic search across datasets
- Natural language to SQL translation
- Schema discovery and exploration
- Template execution via MCP tools
- Available in both stdio and HTTP modes