| name | lancer |
| description | Use lancer CLI for LanceDB semantic and multi-modal search with document ingestion, vector embeddings, and MCP server integration for knowledge retrieval. |
Lancer - LanceDB CLI and MCP Server Skill
You are a specialist in using lancer, a CLI and MCP server for LanceDB that provides semantic and full-text search with multi-modal support (text and images). This skill provides comprehensive workflows, best practices, and common patterns for document ingestion, search, and table management.
What is Lancer?
lancer is a powerful tool for:
- Semantic search: Find documents by meaning, not just keywords
- Multi-modal support: Index and search both text and images
- LanceDB integration: Efficient vector database storage and retrieval
- Flexible ingestion: Support for multiple file formats (txt, md, pdf, sql, images)
- MCP server mode: Integration with Claude Desktop and other MCP clients
Core Capabilities
- Ingest: Add documents to LanceDB with automatic chunking and embedding
- Search: Semantic similarity search across documents
- Tables: Manage LanceDB tables (list, info, delete)
- Remove: Remove documents from tables
- MCP: Run as Model Context Protocol server
Quick Start
Basic Search
# Search all tables
lancer search "how to deploy kubernetes"
# Search specific table with more results
lancer search -t docs -l 20 "authentication methods"
# Search with similarity threshold
lancer search --threshold 0.7 "error handling patterns"
Basic Ingestion
# Ingest a single file
lancer ingest document.md
# Ingest a directory
lancer ingest ./docs/
# Ingest multiple paths
lancer ingest file1.md file2.pdf ./images/
Document Ingestion
Ingest Command Options
# Ingest to specific table
lancer ingest -t my_docs document.md
# Ingest with file extension filter
lancer ingest -e md,txt,pdf ./docs/
# Ingest from stdin (pipe file paths)
find ./docs -name "*.md" | lancer ingest --stdin
# Ingest from file list
lancer ingest --files-from paths.txt
# Custom chunk size and overlap
lancer ingest --chunk-size 2000 --chunk-overlap 400 document.md
Supported File Types
Text formats:
txt- Plain text filesmd- Markdown documentspdf- PDF documentssql- SQL scripts
Image formats:
jpg,jpeg- JPEG imagespng- PNG imagesgif- GIF imagesbmp- Bitmap imageswebp- WebP imagestiff,tif- TIFF imagessvg- SVG vector graphicsico- Icon files
Embedding Models
Text models:
# Default: all-MiniLM-L6-v2 (fast, good quality)
lancer ingest document.md
# Larger model for better quality
lancer ingest --text-model all-MiniLM-L12-v2 document.md
# BGE models (better semantic understanding)
lancer ingest --text-model bge-small-en-v1.5 document.md
lancer ingest --text-model bge-base-en-v1.5 document.md
Image models:
# Default: clip-vit-b-32 (cross-modal text/image)
lancer ingest image.jpg
# ResNet50 for image-only search
lancer ingest --image-model resnet50 image.jpg
Advanced: Force specific model:
# Force CLIP for text (enables future image additions)
lancer ingest --embedding-model clip-vit-b-32 document.md
# Force BGE for performance (text-only)
lancer ingest --embedding-model BAAI/bge-small-en-v1.5 document.md
Ingestion Optimization
# Filter by file size
lancer ingest --min-file-size 1000 --max-file-size 10000000 ./docs/
# Skip embedding generation (metadata only)
lancer ingest --no-embeddings document.md
# Custom batch size for database writes
lancer ingest --batch-size 200 ./large-dataset/
# JSON output for scripting
lancer ingest --format json document.md
Search Operations
Search Command Options
# Basic search
lancer search "kubernetes deployment"
# Search specific table
lancer search -t docs "authentication"
# Limit results
lancer search -l 5 "error handling"
# Set similarity threshold (0.0-1.0)
lancer search --threshold 0.6 "database migration"
# Include embeddings in results
lancer search --include-embeddings "API design"
# JSON output
lancer search --format json "machine learning"
Metadata Filters
# Single filter (field:operator:value)
lancer search --filter "author:eq:John" "AI research"
# Multiple filters
lancer search \
--filter "author:eq:John" \
--filter "year:gt:2020" \
"deep learning"
# Available operators:
# eq (equals), ne (not equals)
# gt (greater than), lt (less than)
# gte (greater/equal), lte (less/equal)
# in (in list), contains (string contains)
Search Examples
# Find recent documentation
lancer search \
-t docs \
--filter "date:gte:2024-01-01" \
-l 10 \
"API endpoints"
# Search by category
lancer search \
--filter "category:eq:tutorial" \
"getting started"
# Multi-criteria search
lancer search \
-t technical_docs \
--filter "language:eq:python" \
--filter "level:eq:advanced" \
--threshold 0.7 \
-l 15 \
"async programming patterns"
Table Management
List Tables
# List all tables
lancer tables list
# JSON output
lancer tables list --format json
Table Information
# Get table details
lancer tables info my_table
# JSON output for scripting
lancer tables info my_table --format json
Delete Table
# Delete a table (be careful!)
lancer tables delete old_table
Remove Documents
# Remove specific documents from a table
lancer remove -t docs document_id
# Remove multiple documents
lancer remove -t docs id1 id2 id3
Configuration
Using Config File
# Specify config file
lancer -c ~/.lancer/config.toml search "query"
# Set default table in config
lancer -c config.toml ingest document.md
Environment Variables
# Set default table
export LANCER_TABLE=my_docs
lancer search "query" # Searches my_docs
# Set log level
export LANCER_LOG_LEVEL=debug
lancer ingest document.md
Log Levels
# Error only
lancer --log-level error search "query"
# Warning
lancer --log-level warn ingest document.md
# Info (default)
lancer --log-level info search "query"
# Debug
lancer --log-level debug ingest document.md
# Trace (verbose)
lancer --log-level trace search "query"
Common Workflows
Workflow 1: Index Documentation
# 1. Ingest markdown docs
lancer ingest -t docs -e md ./documentation/
# 2. Verify ingestion
lancer tables info docs
# 3. Test search
lancer search -t docs "installation guide"
# 4. Refine search with threshold
lancer search -t docs --threshold 0.7 -l 5 "configuration"
Workflow 2: Multi-modal Image Search
# 1. Ingest images with CLIP model
lancer ingest -t images -e jpg,png,webp \
--image-model clip-vit-b-32 \
./photos/
# 2. Search images with text query
lancer search -t images "sunset over mountains"
# 3. Search with higher threshold for precision
lancer search -t images --threshold 0.8 "red car"
Workflow 3: Mixed Content Corpus
# 1. Ingest with CLIP for cross-modal search
lancer ingest -t knowledge_base \
--embedding-model clip-vit-b-32 \
-e md,pdf,jpg,png \
./content/
# 2. Search text and images together
lancer search -t knowledge_base "architecture diagrams"
# 3. Filter by file type
lancer search -t knowledge_base \
--filter "file_type:eq:png" \
"system design"
Workflow 4: Batch Ingestion
# 1. Generate file list
find ./corpus -type f -name "*.md" > files.txt
# 2. Ingest from list with custom settings
lancer ingest -t corpus \
--files-from files.txt \
--chunk-size 1500 \
--chunk-overlap 300 \
--batch-size 150
# 3. Verify ingestion
lancer tables info corpus
# 4. Test search quality
lancer search -t corpus -l 10 "sample query"
Workflow 5: Update Existing Corpus
# 1. Ingest new documents
lancer ingest -t docs ./new_docs/
# 2. Search to verify new content
lancer search -t docs "recent feature"
# 3. Remove outdated documents
lancer remove -t docs old_doc_id
# 4. Verify final state
lancer tables info docs
Best Practices
1. Choose the Right Embedding Model
For text-only corpora:
# Fast and efficient
lancer ingest --text-model all-MiniLM-L6-v2 document.md
# Better quality
lancer ingest --text-model bge-base-en-v1.5 document.md
For images or mixed content:
# Cross-modal search (text queries → image results)
lancer ingest --embedding-model clip-vit-b-32 content/
2. Optimize Chunk Settings
Short documents (< 500 words):
lancer ingest --chunk-size 500 --chunk-overlap 100 article.md
Long documents (> 2000 words):
lancer ingest --chunk-size 2000 --chunk-overlap 400 book.pdf
Code documentation:
lancer ingest --chunk-size 1000 --chunk-overlap 200 docs/
3. Use Tables to Organize Content
# Separate tables by content type
lancer ingest -t api_docs ./api/*.md
lancer ingest -t tutorials ./tutorials/*.md
lancer ingest -t images ./screenshots/*.png
# Search specific context
lancer search -t api_docs "authentication endpoints"
4. Set Appropriate Thresholds
Broad exploration:
lancer search --threshold 0.4 "general topic"
Precise matching:
lancer search --threshold 0.75 "specific concept"
Very high precision:
lancer search --threshold 0.85 -l 3 "exact information"
5. Use Filters for Structured Data
# Combine semantic search with metadata
lancer search \
--filter "status:eq:published" \
--filter "category:eq:tutorial" \
--threshold 0.6 \
"getting started guide"
6. Format Output for Scripting
# JSON output for automation
lancer search --format json "query" | jq '.results[] | .path'
# List tables programmatically
lancer tables list --format json | jq '.[] | .name'
MCP Server Mode
Running as MCP Server
# Start MCP server for Claude Desktop integration
lancer mcp
# With custom config
lancer mcp -c ~/.lancer/config.toml
# With specific log level
lancer mcp --log-level info
Integration with Claude Desktop
Add to Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json):
{
"mcpServers": {
"lancer": {
"command": "lancer",
"args": ["mcp"]
}
}
}
Performance Tips
1. Batch Operations
# Ingest multiple files at once
lancer ingest file1.md file2.md file3.md
# Use --stdin for large batches
find ./docs -name "*.md" | lancer ingest --stdin
2. Optimize Batch Size
# Larger batches for bulk ingestion
lancer ingest --batch-size 500 ./large-corpus/
# Smaller batches for limited memory
lancer ingest --batch-size 50 ./documents/
3. Skip Embeddings for Metadata-Only
# Index metadata without generating embeddings
lancer ingest --no-embeddings ./archive/
4. Use Appropriate Models
# Faster ingestion with smaller model
lancer ingest --text-model all-MiniLM-L6-v2 ./docs/
# Better quality with larger model (slower)
lancer ingest --text-model bge-base-en-v1.5 ./docs/
Troubleshooting
Issue: Search returns no results
Solutions:
# Lower the similarity threshold
lancer search --threshold 0.3 "query"
# Check table exists and has documents
lancer tables list
lancer tables info my_table
# Try different search terms
lancer search "alternative phrasing"
Issue: Ingestion fails for some files
Solutions:
# Check supported extensions
lancer ingest -e md,txt,pdf ./docs/
# Set file size limits
lancer ingest --max-file-size 100000000 ./docs/
# Use debug logging
lancer --log-level debug ingest document.pdf
Issue: Low search quality
Solutions:
# Use better embedding model
lancer ingest --text-model bge-base-en-v1.5 document.md
# Adjust chunk size
lancer ingest --chunk-size 1500 --chunk-overlap 300 document.md
# Adjust search threshold
lancer search --threshold 0.6 "query"
Issue: Slow ingestion
Solutions:
# Increase batch size
lancer ingest --batch-size 300 ./docs/
# Use faster embedding model
lancer ingest --text-model all-MiniLM-L6-v2 ./docs/
# Skip embeddings if not needed
lancer ingest --no-embeddings ./docs/
Quick Reference
# Ingestion
lancer ingest document.md # Ingest single file
lancer ingest -t docs ./directory/ # Ingest to specific table
lancer ingest -e md,pdf ./docs/ # Filter by extensions
lancer ingest --chunk-size 2000 document.md # Custom chunk size
# Search
lancer search "query" # Search all tables
lancer search -t docs "query" # Search specific table
lancer search -l 20 "query" # Limit results
lancer search --threshold 0.7 "query" # Set similarity threshold
lancer search --filter "author:eq:John" "query" # Metadata filter
# Table management
lancer tables list # List all tables
lancer tables info my_table # Table information
lancer tables delete old_table # Delete table
# Configuration
lancer -c config.toml search "query" # Use config file
lancer --log-level debug ingest doc.md # Set log level
export LANCER_TABLE=docs # Set default table
# MCP server
lancer mcp # Start MCP server
Common Patterns
Pattern 1: Quick Documentation Search
lancer search -t docs --threshold 0.7 -l 5 "how to configure authentication"
Pattern 2: Ingest and Test
lancer ingest -t test_docs document.md && \
lancer search -t test_docs "key concept from document"
Pattern 3: Find Similar Images
lancer search -t images --threshold 0.8 "sunset landscape photography"
Pattern 4: Batch Ingest with Verification
find ./docs -name "*.md" | lancer ingest -t docs --stdin && \
lancer tables info docs
Pattern 5: Precise Technical Search
lancer search -t technical_docs \
--filter "language:eq:rust" \
--threshold 0.75 \
-l 10 \
"async trait implementation patterns"
Summary
Primary use cases:
- Semantic search across documentation
- Multi-modal search (text and images)
- Knowledge base indexing and retrieval
- Integration with Claude via MCP
Key advantages:
- Semantic similarity (not just keyword matching)
- Multi-modal support (text and images)
- Flexible metadata filtering
- Multiple embedding model options
- Fast vector search with LanceDB
Most common commands:
lancer ingest document.md- Index documentslancer search "query"- Search semanticallylancer tables list- Manage tableslancer search -t docs --threshold 0.7 "query"- Precise search