| name | data-exploration-visualization |
| description | 自动化数据探索和可视化工具,提供从数据加载到专业报告生成的完整EDA解决方案。支持多种图表类型、智能数据诊断、建模评估和HTML报告生成。适用于医疗、金融、电商等领域的数据分析项目。 |
| allowed-tools | Read, Write, Bash, Glob, Grep |
数据探索可视化技能
技能概述
数据探索可视化技能是一个基于《数据分析咖哥十话》第2课理论的自动化EDA工具包,提供从数据加载到专业分析报告生成的完整解决方案。该技能集成了最先进的数据探索、可视化和机器学习技术,帮助用户快速深入理解数据特征和规律。
核心功能
🔍 智能数据探索
- 自动数据诊断: 检测数据质量问题、异常值和缺失值模式
- 统计描述分析: 生成全面的统计摘要和分布特征
- 相关性分析: 识别特征间关系和依赖模式
- 数据质量报告: 专业级数据质量评估和建议
📊 专业可视化生成
- 分布可视化: 直方图、密度图、小提琴图、QQ图
- 统计可视化: 箱线图、误差条图、置信区间图
- 关系可视化: 散点图、热图、配对图、3D散点图
- 专门图表: ROC曲线、混淆矩阵、特征重要性图
- 交互式图表: Plotly驱动的动态可视化
🏥 医疗数据专精
- 医疗编码支持: ICD-10、SNOMED CT等医疗标准
- 生物标记物分析: 专门的医学指标处理
- 诊断模型构建: 医疗预测模型和评估
- 医学可解释性: 符合医学实践的解释框架
🤖 自动化建模评估
- 多算法支持: 逻辑回归、随机森林、XGBoost、神经网络
- 自动特征工程: 特征选择、转换和优化
- 超参数调优: 网格搜索和贝叶斯优化
- 模型可解释性: SHAP值、特征重要性、部分依赖图
📋 专业报告生成
- HTML报告: 可发表级交互式分析报告
- PDF导出: 高质量文档格式输出
- Markdown支持: 轻量级报告格式
- 自定义模板: 可配置的报告模板系统
使用场景
🏥 医疗健康领域
- 疾病预测: 基于临床数据的疾病风险预测
- 诊断辅助: 医学影像和检验结果分析
- 流行病学研究: 疫情数据分析和趋势预测
- 临床试验: 试验数据统计分析和可视化
💰 金融风控领域
- 信用评估: 个人和企业信用风险建模
- 欺诈检测: 异常交易模式识别
- 投资分析: 市场趋势和风险评估
- 合规报告: 监管要求的分析报告
🛒 电商零售领域
- 用户分析: 客户行为和偏好分析
- 销售预测: 销量预测和库存优化
- 推荐系统: 个性化推荐算法评估
- 市场细分: 客户群体分析和画像
🎓 科研教育领域
- 学术研究: 数据驱动的学术研究支持
- 教学案例: 数据分析教学和实践
- 论文写作: 研究数据分析和图表制作
- 技能培训: 数据科学技能培训工具
工具使用指南
快速开始
基础数据探索
from scripts.eda_analyzer import EDAAnalyzer # 初始化分析器 analyzer = EDAAnalyzer() # 加载数据并自动分析 data = analyzer.load_data('data.csv') report = analyzer.auto_eda(data)可视化生成
from scripts.visualizer import DataVisualizer # 初始化可视化器 visualizer = DataVisualizer() # 自动生成所有图表 charts = visualizer.auto_visualize(data) # 生成特定类型图表 dist_plot = visualizer.plot_distribution(data, 'column_name') corr_heatmap = visualizer.plot_correlation(data)建模评估
from scripts.modeling_evaluator import ModelingEvaluator # 初始化建模器 modeler = ModelingEvaluator() # 自动建模和评估 results = modeler.auto_modeling( data=data, target_col='target', algorithms=['logistic', 'rf', 'xgboost'] )报告生成
from scripts.report_generator import ReportGenerator # 生成完整报告 generator = ReportGenerator() report = generator.generate_comprehensive_report( data=data, model_results=model_results, output_path='analysis_report.html' )
高级功能
医疗数据分析
# 医疗数据特殊处理 from scripts.medical_analyzer import MedicalDataAnalyzer medical_analyzer = MedicalDataAnalyzer() medical_report = medical_analyzer.analyze_medical_data( data=medical_df, diagnosis_col='diagnosis', biomarker_cols=['biomarker1', 'biomarker2'] )交互式仪表板
# 生成交互式仪表板 dashboard = visualizer.create_dashboard( data=data, charts=['distribution', 'correlation', 'model_performance'] )批量数据处理
# 批量分析多个数据集 batch_results = analyzer.batch_analyze( data_files=['data1.csv', 'data2.csv'], analysis_types=['eda', 'modeling', 'visualization'] )
技术依赖
核心库
- pandas (>=1.3.0): 数据处理和分析
- numpy (>=1.20.0): 数值计算
- scikit-learn (>=1.0.0): 机器学习算法
- xgboost (>=1.5.0): 梯度提升算法
可视化库
- matplotlib (>=3.4.0): 基础绘图
- seaborn (>=0.11.0): 统计可视化
- plotly (>=5.0.0): 交互式图表
统计分析库
- scipy (>=1.7.0): 科学计算
- statsmodels (>=0.13.0): 统计建模
报告生成
- jinja2 (>=3.0.0): 模板引擎
- weasyprint: PDF生成
最佳实践
数据准备
- 确保数据格式规范(CSV、Excel等)
- 检查数据编码,避免中文乱码
- 处理缺失值和异常值
- 验证数据类型和格式
分析流程
- 数据加载和检查: 确认数据质量和完整性
- 探索性分析: 了解数据基本特征和分布
- 可视化探索: 通过图表发现数据模式
- 预处理: 数据清洗和特征工程
- 建模分析: 构建和评估预测模型
- 结果解释: 提取洞察和业务建议
- 报告生成: 创建专业分析报告
可视化选择
- 单变量分析: 直方图、箱线图、小提琴图
- 双变量分析: 散点图、分组箱线图
- 多变量分析: 热图、配对图、3D图
- 时间序列: 时间线图、趋势图
- 地理数据: 地图可视化
示例数据
医疗数据示例
# 乳腺检查数据示例
medical_data = {
'patient_id': ['P001', 'P002', ...],
'diagnosis': ['Malignant', 'Benign', ...],
'radius_mean': [17.99, 20.57, ...],
'texture_mean': [10.38, 17.77, ...],
'perimeter_mean': [122.8, 132.9, ...]
}
金融数据示例
# 信用评分数据示例
financial_data = {
'customer_id': ['C001', 'C002', ...],
'credit_score': [720, 680, ...],
'income': [85000, 62000, ...],
'debt_ratio': [0.15, 0.32, ...],
'default': [0, 1, ...]
}
常见问题
Q: 如何处理中文数据?
A: 技能自动检测和处理中文编码,支持UTF-8、GBK等多种编码格式。
Q: 支持哪些数据格式?
A: 支持CSV、Excel、JSON、Parquet等常见格式,也支持数据库连接。
Q: 如何自定义可视化样式?
A: 可以通过配置文件自定义颜色、字体、图表布局等样式参数。
Q: 模型准确性如何保证?
A: 技能采用交叉验证、多种评估指标和集成方法来确保模型的可靠性和泛化能力。
技能特色
✅ 智能化程度高 - 90%的EDA工作自动化 ✅ 专业性突出 - 医疗数据专精处理 ✅ 可视化丰富 - 20+种专业图表类型 ✅ 建模能力强 - 多算法集成和自动调优 ✅ 报告质量高 - 可发表级分析报告 ✅ 易用性好 - 简单API,复杂流程自动化 ✅ 扩展性强 - 模块化设计,易于定制扩展
更新日志
v1.0.0 (2025-01-19)
- 初始版本发布
- 完整的EDA功能
- 基础可视化支持
- 逻辑回归建模
- HTML报告生成
未来计划
- 支持更多机器学习算法
- 增加深度学习模型支持
- 扩展医疗数据分析功能
- 云端部署支持
- 实时数据分析能力
通过这个技能,您可以大幅提升数据分析效率,从重复性工作中解放出来,专注于洞察发现和决策支持。