Claude Code Plugins

Community-maintained marketplace

Feedback

data-exploration-visualization

@liangdabiao/claude-data-analysis-ultra-main
35
0

自动化数据探索和可视化工具,提供从数据加载到专业报告生成的完整EDA解决方案。支持多种图表类型、智能数据诊断、建模评估和HTML报告生成。适用于医疗、金融、电商等领域的数据分析项目。

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-exploration-visualization
description 自动化数据探索和可视化工具,提供从数据加载到专业报告生成的完整EDA解决方案。支持多种图表类型、智能数据诊断、建模评估和HTML报告生成。适用于医疗、金融、电商等领域的数据分析项目。
allowed-tools Read, Write, Bash, Glob, Grep

数据探索可视化技能

技能概述

数据探索可视化技能是一个基于《数据分析咖哥十话》第2课理论的自动化EDA工具包,提供从数据加载到专业分析报告生成的完整解决方案。该技能集成了最先进的数据探索、可视化和机器学习技术,帮助用户快速深入理解数据特征和规律。

核心功能

🔍 智能数据探索

  • 自动数据诊断: 检测数据质量问题、异常值和缺失值模式
  • 统计描述分析: 生成全面的统计摘要和分布特征
  • 相关性分析: 识别特征间关系和依赖模式
  • 数据质量报告: 专业级数据质量评估和建议

📊 专业可视化生成

  • 分布可视化: 直方图、密度图、小提琴图、QQ图
  • 统计可视化: 箱线图、误差条图、置信区间图
  • 关系可视化: 散点图、热图、配对图、3D散点图
  • 专门图表: ROC曲线、混淆矩阵、特征重要性图
  • 交互式图表: Plotly驱动的动态可视化

🏥 医疗数据专精

  • 医疗编码支持: ICD-10、SNOMED CT等医疗标准
  • 生物标记物分析: 专门的医学指标处理
  • 诊断模型构建: 医疗预测模型和评估
  • 医学可解释性: 符合医学实践的解释框架

🤖 自动化建模评估

  • 多算法支持: 逻辑回归、随机森林、XGBoost、神经网络
  • 自动特征工程: 特征选择、转换和优化
  • 超参数调优: 网格搜索和贝叶斯优化
  • 模型可解释性: SHAP值、特征重要性、部分依赖图

📋 专业报告生成

  • HTML报告: 可发表级交互式分析报告
  • PDF导出: 高质量文档格式输出
  • Markdown支持: 轻量级报告格式
  • 自定义模板: 可配置的报告模板系统

使用场景

🏥 医疗健康领域

  • 疾病预测: 基于临床数据的疾病风险预测
  • 诊断辅助: 医学影像和检验结果分析
  • 流行病学研究: 疫情数据分析和趋势预测
  • 临床试验: 试验数据统计分析和可视化

💰 金融风控领域

  • 信用评估: 个人和企业信用风险建模
  • 欺诈检测: 异常交易模式识别
  • 投资分析: 市场趋势和风险评估
  • 合规报告: 监管要求的分析报告

🛒 电商零售领域

  • 用户分析: 客户行为和偏好分析
  • 销售预测: 销量预测和库存优化
  • 推荐系统: 个性化推荐算法评估
  • 市场细分: 客户群体分析和画像

🎓 科研教育领域

  • 学术研究: 数据驱动的学术研究支持
  • 教学案例: 数据分析教学和实践
  • 论文写作: 研究数据分析和图表制作
  • 技能培训: 数据科学技能培训工具

工具使用指南

快速开始

  1. 基础数据探索

    from scripts.eda_analyzer import EDAAnalyzer
    
    # 初始化分析器
    analyzer = EDAAnalyzer()
    
    # 加载数据并自动分析
    data = analyzer.load_data('data.csv')
    report = analyzer.auto_eda(data)
    
  2. 可视化生成

    from scripts.visualizer import DataVisualizer
    
    # 初始化可视化器
    visualizer = DataVisualizer()
    
    # 自动生成所有图表
    charts = visualizer.auto_visualize(data)
    
    # 生成特定类型图表
    dist_plot = visualizer.plot_distribution(data, 'column_name')
    corr_heatmap = visualizer.plot_correlation(data)
    
  3. 建模评估

    from scripts.modeling_evaluator import ModelingEvaluator
    
    # 初始化建模器
    modeler = ModelingEvaluator()
    
    # 自动建模和评估
    results = modeler.auto_modeling(
        data=data,
        target_col='target',
        algorithms=['logistic', 'rf', 'xgboost']
    )
    
  4. 报告生成

    from scripts.report_generator import ReportGenerator
    
    # 生成完整报告
    generator = ReportGenerator()
    report = generator.generate_comprehensive_report(
        data=data,
        model_results=model_results,
        output_path='analysis_report.html'
    )
    

高级功能

  1. 医疗数据分析

    # 医疗数据特殊处理
    from scripts.medical_analyzer import MedicalDataAnalyzer
    
    medical_analyzer = MedicalDataAnalyzer()
    medical_report = medical_analyzer.analyze_medical_data(
        data=medical_df,
        diagnosis_col='diagnosis',
        biomarker_cols=['biomarker1', 'biomarker2']
    )
    
  2. 交互式仪表板

    # 生成交互式仪表板
    dashboard = visualizer.create_dashboard(
        data=data,
        charts=['distribution', 'correlation', 'model_performance']
    )
    
  3. 批量数据处理

    # 批量分析多个数据集
    batch_results = analyzer.batch_analyze(
        data_files=['data1.csv', 'data2.csv'],
        analysis_types=['eda', 'modeling', 'visualization']
    )
    

技术依赖

核心库

  • pandas (>=1.3.0): 数据处理和分析
  • numpy (>=1.20.0): 数值计算
  • scikit-learn (>=1.0.0): 机器学习算法
  • xgboost (>=1.5.0): 梯度提升算法

可视化库

  • matplotlib (>=3.4.0): 基础绘图
  • seaborn (>=0.11.0): 统计可视化
  • plotly (>=5.0.0): 交互式图表

统计分析库

  • scipy (>=1.7.0): 科学计算
  • statsmodels (>=0.13.0): 统计建模

报告生成

  • jinja2 (>=3.0.0): 模板引擎
  • weasyprint: PDF生成

最佳实践

数据准备

  • 确保数据格式规范(CSV、Excel等)
  • 检查数据编码,避免中文乱码
  • 处理缺失值和异常值
  • 验证数据类型和格式

分析流程

  1. 数据加载和检查: 确认数据质量和完整性
  2. 探索性分析: 了解数据基本特征和分布
  3. 可视化探索: 通过图表发现数据模式
  4. 预处理: 数据清洗和特征工程
  5. 建模分析: 构建和评估预测模型
  6. 结果解释: 提取洞察和业务建议
  7. 报告生成: 创建专业分析报告

可视化选择

  • 单变量分析: 直方图、箱线图、小提琴图
  • 双变量分析: 散点图、分组箱线图
  • 多变量分析: 热图、配对图、3D图
  • 时间序列: 时间线图、趋势图
  • 地理数据: 地图可视化

示例数据

医疗数据示例

# 乳腺检查数据示例
medical_data = {
    'patient_id': ['P001', 'P002', ...],
    'diagnosis': ['Malignant', 'Benign', ...],
    'radius_mean': [17.99, 20.57, ...],
    'texture_mean': [10.38, 17.77, ...],
    'perimeter_mean': [122.8, 132.9, ...]
}

金融数据示例

# 信用评分数据示例
financial_data = {
    'customer_id': ['C001', 'C002', ...],
    'credit_score': [720, 680, ...],
    'income': [85000, 62000, ...],
    'debt_ratio': [0.15, 0.32, ...],
    'default': [0, 1, ...]
}

常见问题

Q: 如何处理中文数据?

A: 技能自动检测和处理中文编码,支持UTF-8、GBK等多种编码格式。

Q: 支持哪些数据格式?

A: 支持CSV、Excel、JSON、Parquet等常见格式,也支持数据库连接。

Q: 如何自定义可视化样式?

A: 可以通过配置文件自定义颜色、字体、图表布局等样式参数。

Q: 模型准确性如何保证?

A: 技能采用交叉验证、多种评估指标和集成方法来确保模型的可靠性和泛化能力。

技能特色

智能化程度高 - 90%的EDA工作自动化 ✅ 专业性突出 - 医疗数据专精处理 ✅ 可视化丰富 - 20+种专业图表类型 ✅ 建模能力强 - 多算法集成和自动调优 ✅ 报告质量高 - 可发表级分析报告 ✅ 易用性好 - 简单API,复杂流程自动化 ✅ 扩展性强 - 模块化设计,易于定制扩展

更新日志

v1.0.0 (2025-01-19)

  • 初始版本发布
  • 完整的EDA功能
  • 基础可视化支持
  • 逻辑回归建模
  • HTML报告生成

未来计划

  • 支持更多机器学习算法
  • 增加深度学习模型支持
  • 扩展医疗数据分析功能
  • 云端部署支持
  • 实时数据分析能力

通过这个技能,您可以大幅提升数据分析效率,从重复性工作中解放出来,专注于洞察发现和决策支持。