Claude Code Plugins

Community-maintained marketplace

Feedback

Algorithmic Art Generation

@lifangda/claude-plugins
11
0

|

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name Algorithmic Art Generation
description Create algorithmic art using p5.js with seeded randomness, flow fields, and particle systems. Use when you need to generate generative art, create computational aesthetics, or build interactive artistic visualizations. Automatically activates when discussing: "generative art", "algorithmic art", "p5.js visualization", "computational aesthetics".

Algorithmic Art Generation

When to Use This Skill

Use this skill when:

  • Creating generative art with code
  • Building interactive visualizations
  • Exploring computational aesthetics
  • Generating unique artistic patterns
  • Creating reproducible art with seeds
  • Implementing particle systems
  • Designing flow field visualizations

How It Works

This skill guides Claude through a structured process:

  1. Philosophy Creation - Generate a computational aesthetic movement
  2. Algorithm Design - Create unique generative art algorithms
  3. Technical Implementation - Build with p5.js in self-contained HTML
  4. Interactive Features - Add seed navigation and parameter controls

Core Concepts

Algorithmic Philosophy

  • Computational aesthetic movements
  • Emergent behavior and mathematical beauty
  • Process over final output
  • "Living algorithms, not static images"

Technical Components

  • p5.js Framework - JavaScript creative coding library
  • Seeded Randomness - Reproducible random generation
  • Parametric Variation - Interactive parameter controls
  • Flow Fields - Vector field-based motion
  • Particle Systems - Dynamic particle behaviors

Quick Start

Basic Generative Art

// Seeded random number generator
let seed = 12345;
function seededRandom() {
  seed = (seed * 9301 + 49297) % 233280;
  return seed / 233280;
}

function setup() {
  createCanvas(800, 800);
  background(20);

  // Create generative pattern
  for (let i = 0; i < 1000; i++) {
    let x = seededRandom() * width;
    let y = seededRandom() * height;
    let size = seededRandom() * 50;

    fill(255, 100);
    noStroke();
    circle(x, y, size);
  }
}

Interactive Template

<!DOCTYPE html>
<html>
<head>
  <script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/1.7.0/p5.min.js"></script>
  <style>
    body { margin: 0; background: #1a1a1a; font-family: system-ui; }
    #controls { position: absolute; top: 20px; left: 20px; color: white; }
    button { padding: 10px; margin: 5px; cursor: pointer; }
  </style>
</head>
<body>
  <div id="controls">
    <button onclick="prevSeed()">← Previous</button>
    <span id="seed-display">Seed: 0</span>
    <button onclick="nextSeed()">Next →</button>
  </div>

  <script>
    let currentSeed = 0;

    function setup() {
      createCanvas(windowWidth, windowHeight);
      regenerate();
    }

    function draw() {
      // Animation loop if needed
    }

    function regenerate() {
      randomSeed(currentSeed);
      background(20);
      // Your generative algorithm here
    }

    function prevSeed() {
      currentSeed--;
      document.getElementById('seed-display').innerText = `Seed: ${currentSeed}`;
      regenerate();
    }

    function nextSeed() {
      currentSeed++;
      document.getElementById('seed-display').innerText = `Seed: ${currentSeed}`;
      regenerate();
    }
  </script>
</body>
</html>

Advanced Patterns

Flow Field Visualization

let particles = [];
let flowField;

function setup() {
  createCanvas(800, 800);

  // Create particle system
  for (let i = 0; i < 500; i++) {
    particles.push(new Particle());
  }

  // Generate flow field
  flowField = generateFlowField();
}

function generateFlowField() {
  let field = [];
  let resolution = 20;

  for (let x = 0; x < width; x += resolution) {
    let row = [];
    for (let y = 0; y < height; y += resolution) {
      let angle = noise(x * 0.01, y * 0.01) * TWO_PI * 2;
      row.push(p5.Vector.fromAngle(angle));
    }
    field.push(row);
  }

  return field;
}

class Particle {
  constructor() {
    this.pos = createVector(random(width), random(height));
    this.vel = createVector(0, 0);
    this.acc = createVector(0, 0);
  }

  update() {
    // Follow flow field
    let x = floor(this.pos.x / 20);
    let y = floor(this.pos.y / 20);
    let force = flowField[x][y];

    this.acc.add(force);
    this.vel.add(this.acc);
    this.pos.add(this.vel);
    this.acc.mult(0);

    // Wrap edges
    if (this.pos.x > width) this.pos.x = 0;
    if (this.pos.x < 0) this.pos.x = width;
    if (this.pos.y > height) this.pos.y = 0;
    if (this.pos.y < 0) this.pos.y = height;
  }

  show() {
    stroke(255, 50);
    point(this.pos.x, this.pos.y);
  }
}

Guiding Principles

  1. Beauty in Process - Focus on the algorithm, not just the result
  2. Seeded Reproducibility - Every artwork should be reproducible with a seed
  3. Parametric Control - Allow users to explore variations
  4. Emergent Behavior - Let complexity emerge from simple rules
  5. Mathematical Beauty - Ground aesthetics in computational processes

Best Practices

Code Organization

  • Keep algorithms modular and reusable
  • Use classes for complex behaviors
  • Separate setup, update, and render logic
  • Document mathematical concepts

Performance

  • Optimize particle counts for smooth animation
  • Use object pooling for many particles
  • Batch similar drawing operations
  • Profile and optimize bottlenecks

User Experience

  • Provide clear controls and feedback
  • Show seed numbers for reproducibility
  • Add parameter sliders for exploration
  • Include reset and export functionality

Aesthetic Considerations

  • Balance complexity and clarity
  • Use color theory effectively
  • Consider composition and negative space
  • Test across different seeds

Common Patterns

Noise-Based Terrain

function drawTerrain() {
  for (let x = 0; x < width; x += 5) {
    for (let y = 0; y < height; y += 5) {
      let n = noise(x * 0.01, y * 0.01);
      fill(n * 255);
      rect(x, y, 5, 5);
    }
  }
}

Recursive Patterns

function fractalTree(x, y, len, angle) {
  if (len < 2) return;

  let x2 = x + cos(angle) * len;
  let y2 = y + sin(angle) * len;

  line(x, y, x2, y2);

  fractalTree(x2, y2, len * 0.67, angle - PI/6);
  fractalTree(x2, y2, len * 0.67, angle + PI/6);
}

Agent-Based Systems

class Agent {
  constructor() {
    this.pos = createVector(random(width), random(height));
    this.vel = p5.Vector.random2D();
  }

  interact(others) {
    // Flocking behavior
    let separation = this.separate(others);
    let alignment = this.align(others);
    let cohesion = this.cohere(others);

    this.acc.add(separation);
    this.acc.add(alignment);
    this.acc.add(cohesion);
  }
}

Output Format

When creating algorithmic art, always provide:

  1. Manifesto (Markdown) - 4-6 paragraphs describing the algorithmic philosophy
  2. Interactive HTML - Single self-contained file with:
    • Seed navigation (previous/next buttons)
    • Parameter sliders for key variables
    • Anthropic-branded UI elements
    • Full p5.js implementation
  3. Usage Instructions - How to explore variations and export

Resources

Libraries & Tools

Inspiration

Theory

  • "The Nature of Code" by Daniel Shiffman
  • "Generative Design" by Benedikt Groß
  • "Form+Code" by Casey Reas

Example Interaction

User: "Create generative art inspired by ocean waves"

Skill Activates:

  1. Generates manifesto about "Fluid Dynamics Aesthetics"
  2. Creates algorithm using Perlin noise flow fields
  3. Implements particle system mimicking water movement
  4. Builds interactive HTML with:
    • Wave amplitude slider
    • Flow speed control
    • Seed navigation
    • Ocean color palette
  5. Outputs manifesto + interactive artwork

Notes

  • Always include seed for reproducibility
  • Create self-contained HTML files
  • Emphasize the algorithm, not just the visual
  • Encourage exploration through parameters
  • Balance aesthetic beauty with computational elegance