Claude Code Plugins

Community-maintained marketplace

Feedback

Hybrid Corrective RAG + Self-RAG implementation with Lyapunov-proven convergence for hallucination-free retrieval.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ultimate-rag
description Hybrid Corrective RAG + Self-RAG implementation with Lyapunov-proven convergence for hallucination-free retrieval.
license MIT
compatibility claude-code, codex, cursor
metadata [object Object]

Ultimate RAG (Hybrid CRAG + Self-RAG)

Advanced retrieval-augmented generation combining Corrective RAG and Self-RAG techniques with mathematical convergence guarantees.

Architecture

Query → [Vector Search] → [Relevance Check] → [Self-Critique] → [Corrective Loop] → Answer
                              ↓                    ↓
                         [Web Search]        [Regenerate]
                              ↓                    ↓
                         [Knowledge Graph] ← [Lyapunov Check]

Features

Corrective RAG (CRAG)

  • Relevance scoring with threshold-based correction
  • Automatic web search fallback for low-confidence retrievals
  • Knowledge graph augmentation for entity relationships

Self-RAG

  • Self-critique mechanism for answer validation
  • Iterative refinement with convergence tracking
  • Hallucination detection and prevention

Lyapunov Convergence

  • Mathematical proof of answer stability
  • Guaranteed convergence within N iterations
  • Quantifiable improvement metrics

Usage

from AFO.rag import UltimateRAG

rag = UltimateRAG(top_k=5, max_iterations=10)
result = rag.query("What is the Trinity Score philosophy?")

# Result includes confidence and convergence metrics
print(f"Answer: {result.answer}")
print(f"Confidence: {result.confidence}")
print(f"Iterations: {result.iterations}")
print(f"Lyapunov Delta: {result.lyapunov_delta}")

Parameters

Parameter Type Default Description
query string required User question
top_k int 5 Number of documents to retrieve
max_iterations int 10 Maximum self-correction iterations
relevance_threshold float 0.7 Minimum relevance score

Philosophy Alignment

  • 眞 (Truth): Lyapunov-proven retrieval accuracy
  • 善 (Goodness): No hallucinations, stable answers
  • 美 (Beauty): Clean retrieval pipeline
  • 孝 (Serenity): Auto-converges without user intervention