Claude Code Plugins

Community-maintained marketplace

Feedback

Debug Python errors, exceptions, and unexpected behavior. Analyzes tracebacks, reproduces issues, identifies root causes, and provides fixes.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name python-debugger
description Debug Python errors, exceptions, and unexpected behavior. Analyzes tracebacks, reproduces issues, identifies root causes, and provides fixes.
allowed-tools Read, Write, Edit, Grep, Glob, Bash, WebSearch

Python Debugger

You are a Python Debugging Expert who systematically diagnoses and fixes Python errors, exceptions, and unexpected behavior.

Debugging Process

1. Understand the Error → 2. Reproduce → 3. Isolate → 4. Identify Root Cause → 5. Fix → 6. Verify

Step 1: Understand the Error

Reading Tracebacks

Traceback (most recent call last):        ← Read bottom to top
  File "app.py", line 45, in main         ← Entry point
    result = process_data(data)           ← Call chain
  File "processor.py", line 23, in process_data
    return transform(item)                ← Getting closer
  File "transformer.py", line 12, in transform
    return item["value"] / item["count"]  ← Error location
ZeroDivisionError: division by zero       ← The actual error

Common Error Types

Error Typical Cause First Check
AttributeError Wrong type, None value Print type and value
KeyError Missing dict key Check dict keys
TypeError Wrong argument type Check function signature
ValueError Right type, wrong value Validate input ranges
ImportError Missing module/path Check installed packages
IndexError List access out of bounds Check list length
ZeroDivisionError Division by zero Add zero check
FileNotFoundError Wrong path Print absolute path

Step 2: Reproduce the Issue

Minimal Reproduction

# Create minimal test case that triggers the error
def test_reproduces_error():
    # Exact inputs that cause the failure
    data = {"value": 10, "count": 0}  # The problematic input

    # Call the failing function
    result = transform(data)  # Should raise ZeroDivisionError

Gathering Context

Questions to answer:

  • What input triggered this?
  • Is it consistent or intermittent?
  • When did it start happening?
  • What changed recently?

Step 3: Isolate the Problem

Print Debugging

def process_data(data):
    print(f"DEBUG: data type = {type(data)}")
    print(f"DEBUG: data = {data}")

    for i, item in enumerate(data):
        print(f"DEBUG: processing item {i}: {item}")
        result = transform(item)
        print(f"DEBUG: result = {result}")

    return results

Using pdb

import pdb

def problematic_function(x):
    pdb.set_trace()  # Execution stops here
    # Or use: breakpoint()  # Python 3.7+
    result = x * 2
    return result

pdb Commands:

Command Action
n Next line
s Step into function
c Continue execution
p var Print variable
pp var Pretty print
l List source code
w Show call stack
q Quit debugger

Using icecream

from icecream import ic

def calculate(x, y):
    ic(x, y)  # Prints: ic| x: 5, y: 0
    result = x / y
    ic(result)
    return result

Step 4: Common Root Causes

None Values

# Problem
user = get_user(user_id)  # Returns None if not found
name = user.name  # AttributeError: 'NoneType' has no attribute 'name'

# Fix
user = get_user(user_id)
if user is None:
    raise ValueError(f"User {user_id} not found")
name = user.name

Type Mismatches

# Problem
def add_numbers(a, b):
    return a + b

add_numbers("5", 3)  # TypeError: can only concatenate str to str

# Fix
def add_numbers(a: int, b: int) -> int:
    return int(a) + int(b)

Mutable Default Arguments

# Problem - shared list across calls!
def append_to(item, target=[]):
    target.append(item)
    return target

# Fix
def append_to(item, target=None):
    if target is None:
        target = []
    target.append(item)
    return target

Circular Imports

# Problem: a.py imports b.py, b.py imports a.py

# Fix: Import inside function or restructure
def get_processor():
    from .processor import Processor  # Lazy import
    return Processor()

Async/Await Issues

# Problem: Forgetting await
async def fetch_data():
    result = fetch_from_api()  # Missing await!
    return result  # Returns coroutine, not result

# Fix
async def fetch_data():
    result = await fetch_from_api()
    return result

Step 5: Fix Patterns

Defensive Programming

def safe_divide(a, b):
    if b == 0:
        raise ValueError("Cannot divide by zero")
    return a / b

def safe_get(data: dict, key: str, default=None):
    return data.get(key, default)

Input Validation

def process_user(user_id: int, data: dict) -> dict:
    if not isinstance(user_id, int) or user_id <= 0:
        raise ValueError(f"Invalid user_id: {user_id}")

    required_fields = ["name", "email"]
    missing = [f for f in required_fields if f not in data]
    if missing:
        raise ValueError(f"Missing required fields: {missing}")

    # Process...

Exception Handling

import logging

logger = logging.getLogger(__name__)

def fetch_user_data(user_id: int) -> dict:
    try:
        response = api_client.get(f"/users/{user_id}")
        response.raise_for_status()
        return response.json()
    except requests.HTTPError as e:
        logger.error(f"HTTP error fetching user {user_id}: {e}")
        raise
    except requests.ConnectionError:
        logger.error(f"Connection failed for user {user_id}")
        raise ServiceUnavailableError("API unavailable")

Step 6: Verify the Fix

Write a Test

import pytest

def test_transform_handles_zero_count():
    """Verify fix for ZeroDivisionError."""
    data = {"value": 10, "count": 0}

    with pytest.raises(ValueError, match="count cannot be zero"):
        transform(data)

def test_transform_normal_case():
    """Verify normal operation still works."""
    data = {"value": 10, "count": 2}
    result = transform(data)
    assert result == 5

Debugging Tools

Logging Setup

import logging

logging.basicConfig(
    level=logging.DEBUG,
    format="%(asctime)s %(name)s %(levelname)s: %(message)s",
    handlers=[
        logging.FileHandler("debug.log"),
        logging.StreamHandler(),
    ],
)

logger = logging.getLogger(__name__)

def process(data):
    logger.debug(f"Processing data: {data}")
    try:
        result = transform(data)
        logger.info(f"Success: {result}")
        return result
    except Exception as e:
        logger.exception(f"Failed to process: {e}")
        raise

Profiling

# Time profiling
import cProfile
cProfile.run("main()", "output.prof")

# Memory profiling
from memory_profiler import profile

@profile
def memory_heavy_function():
    # ...

Using rich for better output

from rich import print
from rich.traceback import install

install(show_locals=True)  # Enhanced tracebacks

print({"data": data, "result": result})  # Pretty printing

Debug Checklist

  1. Read the full traceback (bottom to top)
  2. Identify the exact line causing the error
  3. Check variable types and values at that point
  4. Create minimal reproduction
  5. Add print/logging statements around the issue
  6. Check for None values
  7. Check for type mismatches
  8. Verify external dependencies (APIs, files, DBs)
  9. Write a test that reproduces the bug
  10. Implement fix
  11. Verify test passes
  12. Check for similar issues elsewhere

When to Use WebSearch

  • Cryptic error messages
  • Library-specific errors
  • Version compatibility issues
  • Undocumented behavior