Claude Code Plugins

Community-maintained marketplace

Feedback

Use when implementing a new data source adapter for metapyle, before writing any source code

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name adding-api-sources
description Use when implementing a new data source adapter for metapyle, before writing any source code

Adding API Sources to Metapyle

Overview

Add new financial data source adapters following TDD and established patterns. Each source provides fetch() and get_metadata() methods with lazy imports for optional dependencies.

Core principle: Use brainstorming skill first for design decisions, then implement following established patterns.

Workflow

  1. Design - Use brainstorming skill to decide data model mapping
  2. Plan - Use writing-plans skill for implementation plan
  3. Implement - Follow TDD with subagents (see Quick Reference)

Design Questions (Brainstorming Phase)

Before coding, answer these questions using the brainstorming skill:

Question Why It Matters
What maps to symbol? Primary identifier (ticker, bbid, series ID)
What maps to field? Secondary identifier if needed (PX_LAST, dataset::column)
Need params field? Extra filters (tenor, location, deltaStrike)
Authentication model? External (user calls auth) or internal (credentials passed)
Batch strategy? Single call for all symbols, or group by some key?
Column naming? Symbol only, or symbol::field for uniqueness?
Metadata available? What can get_metadata() return?

Quick Reference

Step Files Key Actions
1. Branch git checkout -b feature/<source>-source
2. Skeleton sources/<source>.py Lazy import + class with NotImplementedError
3. Export sources/__init__.py Add import + __all__
4. Tests tests/unit/test_sources_<source>.py Mock-based tests (RED)
5. Implement sources/<source>.py fetch() then get_metadata() (GREEN)
6. Config pyproject.toml Optional dep + mypy ignore
7. Verify pytest, mypy, ruff

Batch Fetch API

Sources receive batched requests via Sequence[FetchRequest]:

from collections.abc import Sequence
from metapyle.sources.base import BaseSource, FetchRequest, make_column_name, register_source

@register_source("<source>")
class <Source>Source(BaseSource):
    def fetch(
        self,
        requests: Sequence[FetchRequest],
        start: str,
        end: str,
    ) -> pd.DataFrame:
        """
        Parameters
        ----------
        requests : Sequence[FetchRequest]
            Each has: symbol, field (optional), path (optional), params (optional)
        start, end : str
            ISO dates (YYYY-MM-DD)
            
        Returns
        -------
        pd.DataFrame
            DatetimeIndex, columns named via make_column_name(symbol, field)
        """
        if not requests:
            return pd.DataFrame()
        # ... implementation

FetchRequest Fields

@dataclass(frozen=True, slots=True, kw_only=True)
class FetchRequest:
    symbol: str                          # Required - primary identifier
    field: str | None = None             # Optional - e.g., "PX_LAST", "dataset::col"
    path: str | None = None              # Optional - for localfile source
    params: dict[str, Any] | None = None # Optional - extra filters

Column Naming

Always use make_column_name() for output columns:

from metapyle.sources.base import make_column_name

# In fetch(), rename columns:
for req in requests:
    col_name = make_column_name(req.symbol, req.field)  # "AAPL::PX_LAST" or "AAPL"
    result[col_name] = data[req.symbol]

Batch Grouping Pattern

When API requires grouping (e.g., by dataset):

def fetch(self, requests: Sequence[FetchRequest], start: str, end: str) -> pd.DataFrame:
    # Group by some key (dataset_id, field type, etc.)
    groups: dict[str, list[FetchRequest]] = {}
    for req in requests:
        key = extract_key(req.field)  # Your grouping logic
        groups.setdefault(key, []).append(req)
    
    # Fetch each group (potentially in parallel)
    result_dfs: list[pd.DataFrame] = []
    for key, group_requests in groups.items():
        symbols = [req.symbol for req in group_requests]
        df = api.batch_fetch(key, symbols, start, end)
        result_dfs.append(df)
    
    # Merge results
    result = result_dfs[0]
    for df in result_dfs[1:]:
        result = result.join(df, how="outer")
    return result

Lazy Import Pattern

_LIB_AVAILABLE: bool | None = None
_lib_modules: dict[str, Any] = {}

def _get_lib() -> dict[str, Any]:
    """Lazy import of library modules."""
    global _LIB_AVAILABLE, _lib_modules
    if _LIB_AVAILABLE is None:
        try:
            from library import Module1, Module2
            _lib_modules = {"Module1": Module1, "Module2": Module2}
            _LIB_AVAILABLE = True
        except (ImportError, Exception):
            _lib_modules = {}
            _LIB_AVAILABLE = False
    return _lib_modules

Exception Handling

try:
    data = api.fetch(symbols, start, end)
except (FetchError, NoDataError):
    raise  # Re-raise our exceptions as-is
except Exception as e:
    logger.error("fetch_failed: symbols=%s, error=%s", symbols, str(e))
    raise FetchError(f"API error: {e}") from e

if data.empty:
    raise NoDataError(f"No data returned for {symbols}")

Test Pattern

class TestSourceFetch:
    def test_single_request(self) -> None:
        with patch("metapyle.sources.<source>._get_lib") as mock_get:
            mock_lib = {"API": MagicMock()}
            mock_lib["API"].fetch.return_value = mock_data
            mock_get.return_value = mock_lib

            source = <Source>Source()
            requests = [FetchRequest(symbol="SYM", field="FIELD")]
            df = source.fetch(requests, "2024-01-01", "2024-12-31")

            assert "SYM::FIELD" in df.columns
            assert isinstance(df.index, pd.DatetimeIndex)

pyproject.toml

[project.optional-dependencies]
<source> = ["<library>"]

[[tool.mypy.overrides]]
module = ["<library>", "<library>.*"]
ignore_missing_imports = true

Common Mistakes

Mistake Fix
Wrong fetch() signature Must be fetch(requests: Sequence[FetchRequest], start, end)
Import at module level Use lazy import pattern with _get_lib()
Manual column naming Use make_column_name(symbol, field)
f-strings in logging Use logger.debug("msg: %s", var)
Missing empty request check Return pd.DataFrame() if not requests
Catching exceptions silently Re-raise FetchError/NoDataError, wrap others

TDD Order

  1. RED: Write test for _get_lib() (library not installed)
  2. GREEN: Implement lazy import
  3. RED: Write test for single request fetch
  4. GREEN: Implement basic fetch
  5. RED: Write test for batch fetch
  6. GREEN: Implement batch handling
  7. RED: Write error handling tests
  8. GREEN: Implement error handling
  9. VERIFY: Run full test suite, ruff, mypy