| name | comprehensive-research |
| description | Multi-phase research orchestration for thorough codebase, documentation, and external knowledge investigation. Invoked by /ai-eng/research command. Use when conducting deep analysis, exploring codebases, investigating patterns, or synthesizing findings from multiple sources. |
| version | 1.0.0 |
| tags | research, analysis, discovery, documentation, synthesis, multi-agent |
Comprehensive Research Skill
A systematic multi-phase research orchestration skill that coordinates specialized agents to conduct thorough investigations across codebases, documentation, and external sources. Based on proven patterns from codeflow research workflows with incentive-based prompting enhancements.
How It Works
This skill orchestrates a disciplined research workflow through three primary phases:
- Discovery Phase (Parallel): Multiple locator agents scan simultaneously
- Analysis Phase (Sequential): Deep analyzers process findings with evidence chains
- Synthesis Phase: Consolidated insights with actionable recommendations
Research Methodology
Phase 1: Context & Scope Definition
Before spawning agents, establish:
## Research Scope Analysis
- **Primary Question**: [Core research objective]
- **Decomposed Sub-Questions**: [Derived investigation areas]
- **Scope Boundaries**: [What's in/out of scope]
- **Depth Level**: shallow | medium | deep
- **Expected Deliverables**: [Documentation, recommendations, code refs]
Critical Rule: Always read primary sources fully BEFORE spawning agents.
Phase 2: Parallel Discovery
Spawn these agents concurrently for comprehensive coverage:
| Agent | Purpose | Timeout |
|---|---|---|
codebase-locator |
Find relevant files, components, directories | 5 min |
research-locator |
Discover existing docs, decisions, notes | 3 min |
codebase-pattern-finder |
Identify recurring implementation patterns | 4 min |
Discovery Output Structure:
{
"codebase_files": ["path/file.ext:lines"],
"documentation": ["docs/path.md"],
"patterns_identified": ["pattern-name"],
"coverage_map": {"area": "percentage"}
}
Phase 3: Sequential Deep Analysis
After discovery completes, run analyzers sequentially:
| Agent | Purpose | Depends On |
|---|---|---|
codebase-analyzer |
Implementation details with file:line evidence | codebase-locator |
research-analyzer |
Extract decisions, constraints, insights | research-locator |
For Complex Research, Add:
| Agent | Condition |
|---|---|
web-search-researcher |
External context needed |
system-architect |
Architectural implications |
database-expert |
Data layer concerns |
security-scanner |
Security assessment needed |
Phase 4: Synthesis & Documentation
Aggregate all findings into structured output:
---
date: YYYY-MM-DD
researcher: Assistant
topic: 'Research Topic'
tags: [research, relevant, tags]
status: complete
confidence: high|medium|low
---
## Synopsis
[1-2 sentence summary of research objective and outcome]
## Summary
[3-5 bullet points of high-level findings]
## Detailed Findings
### Component Analysis
- **Finding**: [Description]
- **Evidence**: `file.ext:line-range`
- **Implications**: [What this means]
### Documentation Insights
- **Decisions Made**: [Past architectural decisions]
- **Rationale**: [Why decisions were made]
- **Constraints**: [Technical/operational limits]
### Code References
- `path/file.ext:12-45` - Description of relevance
- `path/other.ext:78` - Key function location
## Architecture Insights
[Key patterns, design decisions, cross-component relationships]
## Historical Context
[Insights from existing documentation, evolution of the system]
## Recommendations
### Immediate Actions
1. [First priority action]
2. [Second priority action]
### Long-term Considerations
- [Strategic recommendation]
## Risks & Limitations
- [Identified risk with mitigation]
- [Research limitation]
## Open Questions
- [ ] [Unresolved question requiring further investigation]
Agent Coordination Best Practices
Execution Order Optimization
┌─────────────────────────────────────────────────────────────┐
│ Phase 1: Discovery (PARALLEL) │
│ ┌──────────────┐ ┌──────────────┐ ┌──────────────────────┐ │
│ │codebase- │ │research- │ │codebase-pattern- │ │
│ │locator │ │locator │ │finder │ │
│ └──────┬───────┘ └──────┬───────┘ └──────────┬───────────┘ │
│ │ │ │ │
│ └────────────────┼─────────────────────┘ │
│ ▼ │
├─────────────────────────────────────────────────────────────┤
│ Phase 2: Analysis (SEQUENTIAL) │
│ ┌──────────────┐ ┌──────────────┐ │
│ │codebase- │──────▶│research- │ │
│ │analyzer │ │analyzer │ │
│ └──────────────┘ └──────────────┘ │
│ │
├─────────────────────────────────────────────────────────────┤
│ Phase 3: Domain Specialists (CONDITIONAL) │
│ ┌────────────┐ ┌────────────┐ ┌────────────┐ │
│ │web-search- │ │database- │ │security- │ │
│ │researcher │ │expert │ │scanner │ │
│ └────────────┘ └────────────┘ └────────────┘ │
│ │
├─────────────────────────────────────────────────────────────┤
│ Phase 4: Validation (PARALLEL) │
│ ┌──────────────┐ ┌──────────────┐ │
│ │code-reviewer │ │architect- │ │
│ │ │ │review │ │
│ └──────────────┘ └──────────────┘ │
└─────────────────────────────────────────────────────────────┘
Quality Indicators
- Comprehensive Coverage: Multiple agents provide overlapping validation
- Evidence-Based: All findings include specific file:line references
- Contextual Depth: Historical decisions and rationale included
- Actionable Insights: Clear next steps provided
- Risk Assessment: Potential issues identified
Caching Strategy
Cache Configuration
type: hierarchical
ttl: 3600 # 1 hour
invalidation: manual
scope: command
What to Cache
- Successful agent coordination strategies for similar topics
- Effective agent combinations
- Question decomposition patterns
- Pattern recognition results
Cache Performance Targets
- Hit rate: ≥60%
- Memory usage: <30MB
- Response time improvement: <150ms
Error Handling
Common Failure Modes
| Scenario | Phase | Mitigation |
|---|---|---|
| Invalid research question | Context Analysis | Request clarification |
| Agent timeout | Discovery/Analysis | Retry with reduced scope |
| Insufficient findings | Synthesis | Expand scope, add agents |
| Conflicting information | Synthesis | Document conflicts, flag for review |
Escalation Triggers
- Multiple agent failures
- Scope exceeds single-session capacity
- Cross-repository research needed
- External API/service investigation required
Structured Output Format
{
"status": "success|in_progress|error",
"timestamp": "ISO-8601",
"cache": {
"hit": true,
"key": "pattern:{hash}:{scope}",
"ttl_remaining": 3600,
"savings": 0.25
},
"research": {
"question": "Primary research question",
"scope": "codebase|documentation|external|all",
"depth": "shallow|medium|deep"
},
"findings": {
"total_files": 23,
"codebase_refs": 18,
"documentation_refs": 5,
"insights_generated": 7,
"patterns_identified": 3
},
"document": {
"path": "docs/research/YYYY-MM-DD-topic.md",
"sections": ["synopsis", "summary", "findings", "recommendations"],
"code_references": 12,
"historical_context": 3
},
"agents_used": [
"codebase-locator",
"research-locator",
"codebase-analyzer",
"research-analyzer"
],
"metadata": {
"processing_time_seconds": 180,
"cache_savings_percent": 0.25,
"agent_tasks_completed": 6,
"follow_up_items": 2
},
"confidence": {
"overall": 0.85,
"codebase_coverage": 0.9,
"documentation_coverage": 0.7,
"external_coverage": 0.8
}
}
Anti-Patterns to Avoid
- Spawning agents before reading sources - Always understand context first
- Running agents sequentially when parallelization is possible - Maximize concurrency
- Relying solely on cached documentation - Prioritize current codebase state
- Skipping cache checks - Always check for existing research
- Ignoring historical context - Past decisions inform current understanding
- Over-scoping initial research - Start focused, expand if needed
Integration with Incentive-Based Prompting
Apply these techniques when spawning research agents:
Expert Persona for Analyzers
You are a senior systems analyst with 12+ years of experience at companies like
Google and Stripe. Your expertise is in extracting actionable insights from
complex codebases and documentation.
Stakes Language for Discovery
This research is critical for the project's success. Missing relevant files
or documentation will result in incomplete analysis.
Step-by-Step for Synthesis
Take a deep breath. Analyze findings systematically before synthesizing.
Cross-reference all claims with evidence. Identify gaps methodically.
Example Usage
Basic Research Request
/research "How does the authentication system work in this codebase?"
Advanced Research with Parameters
/research "Analyze payment processing implementation" --scope=codebase --depth=deep
Research from Ticket
/research --ticket="docs/tickets/AUTH-123.md" --scope=both
Follow-Up Commands
After research completes, typical next steps:
/plan- Create implementation plan based on findings/review- Validate research conclusions/work- Begin implementation with full context
Research Quality Checklist
Before finalizing research output:
- All claims have file:line evidence
- Historical context included where relevant
- Open questions explicitly listed
- Recommendations are actionable
- Confidence levels assigned
- Cross-component relationships identified
- Potential risks documented
Research References
This skill incorporates methodologies from:
- Codeflow Research Patterns - Multi-agent orchestration
- Bsharat et al. (2023) - Principled prompting for quality
- Kong et al. (2023) - Expert persona effectiveness
- Yang et al. (2023) - Step-by-step reasoning optimization