| name | development-assistant |
| description | Guides through adding new features, MCP tools, analyzers, and extending the patent creator system. |
Development Assistant Skill
Expert system for developing and extending the Claude Patent Creator. Guides through adding new MCP tools, analyzers, configuration options, and features while following best practices and existing patterns.
When to Use This Skill
Activate when adding MCP tools, analyzers, configuration options, BigQuery queries, slash commands, or implementing performance optimizations.
Development Workflow
Feature Request -> Planning -> Implementation (Code + Validation + Monitoring + Tests) -> Testing -> Documentation -> Integration
Adding New MCP Tools
Quick Start:
- Define inputs, outputs, dependencies
- Create Pydantic model in
mcp_server/validation.py - Add tool function in
mcp_server/server.pywith decorators - Create test script in
scripts/ - Update CLAUDE.md
Key Decorators:
@mcp.tool() # Register as MCP tool
@validate_input(YourInput) # Pydantic validation
@track_performance # Performance monitoring
Template:
def your_tool(param: str, optional: int = 10) -> dict:
"""Comprehensive docstring (Claude sees this).
Args:
param: Description
optional: Description with default
Returns:
Dictionary containing: key1, key2, key3
"""
# Implementation
return {"result": "data"}
Adding New Analyzers
Overview: Analyzers inherit from BaseAnalyzer and check USPTO compliance.
Minimal Example:
from mcp_server.analyzer_base import BaseAnalyzer
class YourAnalyzer(BaseAnalyzer):
def __init__(self):
super().__init__()
self.mpep_sections = ["608", "2173"]
def analyze(self, content: str) -> dict:
issues = []
if violation:
issues.append({
"type": "violation_name",
"severity": "critical",
"mpep_citation": "MPEP 608",
"recommendation": "Fix description"
})
return {"compliant": len(issues) == 0, "issues": issues}
Adding Configuration Options
Use Pydantic settings in mcp_server/config.py:
# In config.py
class AppSettings(BaseSettings):
enable_feature_x: bool = Field(default=False, description="Enable X")
# In your code
from mcp_server.config import get_settings
if get_settings().enable_feature_x:
# Feature enabled
Adding Performance Monitoring
@track_performance
def your_function(data):
with OperationTimer("step1"):
result1 = step1(data)
with OperationTimer("step2"):
result2 = step2(result1)
return result2
Modifying RAG Search Pipeline
Pipeline: Query -> HyDE -> Vector+BM25 -> RRF -> Reranking -> Results
Customization Points: Query expansion, custom scoring, filtering, reranking strategies
Adding New Slash Commands
- Create
.claude/commands/your-command.md - Add frontmatter:
description,model - Write workflow instructions
- Restart Claude Code
Template:
---
description: Brief command description
model: claude-sonnet-4-5-20250929
---
# Command Name
## When to Use
- Use case 1
## How It Works
Step 1: ...
Development Best Practices
- Follow existing patterns
- Use type hints
- Write docstrings (Google style)
- Handle errors gracefully
- Validate inputs (Pydantic)
- Log operations
- Monitor performance
Common Development Tasks
Add BigQuery Query: Add method in mcp_server/bigquery_search.py
Add Validation Rule:
class YourInput(BaseModel):
field: str
@field_validator("field")
@classmethod
def validate_field(cls, v):
if not meets_requirement(v):
raise ValueError("Error message")
return v
Add Logging:
from mcp_server.logging_config import get_logger
logger = get_logger()
logger.info("event_name", extra={"context": "data"})
Quick Reference: File Locations
| Task | Primary File | Related Files |
|---|---|---|
| Add MCP tool | mcp_server/server.py |
mcp_server/validation.py |
| Add analyzer | mcp_server/your_analyzer.py |
mcp_server/analyzer_base.py |
| Add config | mcp_server/config.py |
.env, CLAUDE.md |
| Add BigQuery query | mcp_server/bigquery_search.py |
- |
| Add test | scripts/test_your_feature.py |
- |
Key Patterns
MCP Tool Pattern:
@mcp.tool()
@validate_input(InputModel)
@track_performance
def tool_name(param: type) -> dict:
"""Docstring visible to Claude."""
from module import Component
if invalid:
return {"error": "message"}
result = process(param)
return {"key": "value"}
Analyzer Pattern:
class YourAnalyzer(BaseAnalyzer):
def analyze(self, content: str) -> dict:
issues = []
issues.extend(self._check_x(content))
return {
"compliant": len(issues) == 0,
"issues": issues,
"recommendations": self._generate_recommendations(issues)
}