Claude Code Plugins

Community-maintained marketplace

Feedback

Data science and machine learning platform functions for the East language (TypeScript types). Use when writing East programs that need optimization (MADS, Optuna, SimAnneal, Scipy), machine learning (XGBoost, LightGBM, NGBoost, Torch MLP, Lightning, GP), ML utilities (Sklearn preprocessing, metrics, splits), or model explainability (SHAP). Triggers for: (1) Writing East programs with @elaraai/east-py-datascience, (2) Derivative-free optimization with MADS, (3) Bayesian optimization with Optuna, (4) Discrete/combinatorial optimization with SimAnneal, (5) Gradient boosting with XGBoost or LightGBM, (6) Probabilistic predictions with NGBoost or GP, (7) Neural networks with Torch MLP or Lightning, (8) Data preprocessing and metrics with Sklearn, (9) Model explainability with Shap.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md


name: east-py-datascience description: Data science and machine learning platform functions for the East language (TypeScript types). Use when writing East programs that need optimization (MADS, Optuna, SimAnneal, Scipy), machine learning (XGBoost, LightGBM, NGBoost, Torch MLP, Lightning, GP), ML utilities (Sklearn preprocessing, metrics, splits), or model explainability (SHAP). Triggers for: (1) Writing East programs with @elaraai/east-py-datascience, (2) Derivative-free optimization with MADS, (3) Bayesian optimization with Optuna, (4) Discrete/combinatorial optimization with SimAnneal, (5) Gradient boosting with XGBoost or LightGBM, (6) Probabilistic predictions with NGBoost or GP, (7) Neural networks with Torch MLP or Lightning, (8) Data preprocessing and metrics with Sklearn, (9) Model explainability with Shap.

East Data Science

Data science and machine learning platform functions for the East language. Provides optimization, ML models, preprocessing, and explainability.

Quick Start

import { East, FloatType, variant } from "@elaraai/east";
import { MADS } from "@elaraai/east-py-datascience";

// Define objective function
const objective = East.function([MADS.Types.VectorType], FloatType, ($, x) => {
    const x0 = $.let(x.get(0n));
    const x1 = $.let(x.get(1n));
    return $.return(x0.multiply(x0).add(x1.multiply(x1)));
});

// Optimize
const optimize = East.function([], MADS.Types.ResultType, $ => {
    const x0 = $.let([0.5, 0.5]);
    const bounds = $.let({ lower: [-1.0, -1.0], upper: [1.0, 1.0] });
    const config = $.let({
        max_bb_eval: variant('some', 100n),
        display_degree: variant('some', 0n),
        direction_type: variant('none', null),
        initial_mesh_size: variant('none', null),
        min_mesh_size: variant('none', null),
        seed: variant('some', 42n),
    });
    return $.return(MADS.optimize(objective, x0, bounds, variant('none', null), config));
});

Decision Tree: Which Module to Use

Task → What do you need?
    │
    ├─ MADS (derivative-free continuous optimization)
    │   └─ .optimize()
    │
    ├─ Optuna (Bayesian hyperparameter tuning)
    │   └─ .optimize()
    │
    ├─ SimAnneal (discrete/combinatorial optimization)
    │   └─ .optimize(), .optimizePermutation(), .optimizeSubset()
    │
    ├─ Scipy
    │   ├─ Optimization → .optimizeMinimize(), .optimizeMinimizeQuadratic(), .optimizeDualAnnealing()
    │   ├─ Statistics → .statsDescribe(), .statsPearsonr(), .statsSpearmanr(), .statsPercentile(), .statsIqr(), .statsMedian(), .statsMad(), .statsRobust()
    │   ├─ Curve Fitting → .curveFit()
    │   └─ Interpolation → .interpolate1dFit(), .interpolate1dPredict()
    │
    ├─ XGBoost (gradient boosting)
    │   ├─ Train → .trainRegressor(), .trainClassifier(), .trainQuantile()
    │   └─ Predict → .predict(), .predictClass(), .predictProba(), .predictQuantile()
    │
    ├─ LightGBM (fast gradient boosting)
    │   ├─ Train → .trainRegressor(), .trainClassifier()
    │   └─ Predict → .predict(), .predictClass(), .predictProba()
    │
    ├─ NGBoost (probabilistic gradient boosting)
    │   ├─ Train → .trainRegressor()
    │   └─ Predict → .predict(), .predictDist()
    │
    ├─ Torch (neural networks)
    │   ├─ Train → .mlpTrain(), .mlpTrainMulti()
    │   ├─ Predict → .mlpPredict(), .mlpPredictMulti()
    │   └─ Embeddings → .mlpEncode(), .mlpDecode()
    │
    ├─ Lightning (PyTorch Lightning neural networks)
    │   ├─ Train → .train(X, y, config, masks, group_weights, conditions)
    │   ├─ Predict → .predict(model, X, masks, conditions)
    │   ├─ Embeddings → .encode(), .decode(), .decodeConditional() (autoencoder only)
    │   ├─ Architectures:
    │   │   ├─ mlp: simple feedforward
    │   │   ├─ autoencoder: encoder → latent → decoder
    │   │   ├─ conv1d: 1D convolutional autoencoder (temporal)
    │   │   ├─ sequential: LSTM/GRU autoencoder (temporal)
    │   │   └─ transformer: attention-based autoencoder (temporal)
    │   ├─ Output modes:
    │   │   ├─ regression: MSE loss
    │   │   ├─ binary: BCE loss, per-position pos_weights (VectorType), masks
    │   │   └─ multi_head: N independent CE heads, per-head class_weights, masks
    │   ├─ Conditional generation: condition_dim in temporal architectures
    │   └─ Features: early stopping, gradient clipping, epoch callbacks, group_weights
    │
    ├─ GP (Gaussian Process regression)
    │   ├─ Train → .train()
    │   └─ Predict → .predict(), .predictStd()
    │
    ├─ Sklearn (preprocessing & metrics)
    │   ├─ Splitting → .trainTestSplit(), .trainValTestSplit()
    │   ├─ Scaling → .standardScalerFit(), .standardScalerTransform(), .minMaxScalerFit(), .minMaxScalerTransform()
    │   ├─ Metrics → .computeMetrics(), .computeMetricsMulti(), .computeClassificationMetrics(), .computeClassificationMetricsMulti()
    │   └─ Multi-target → .regressorChainTrain(), .regressorChainPredict()
    │
    └─ Shap (model explainability)
        ├─ Create → .treeExplainerCreate() (XGBoost only), .kernelExplainerCreate() (any model)
        ├─ Compute → .computeValues(), .featureImportance()
        └─ Supports → TreeExplainer: XGBoost; KernelExplainer: XGBoost, LightGBM, NGBoost, GP, Torch, RegressorChain

Common Types

Type Definition Description
VectorType ArrayType(FloatType) 1D array of floats (e.g., [1.0, 2.0, 3.0])
MatrixType ArrayType(ArrayType(FloatType)) 2D array of floats (e.g., [[1.0, 2.0], [3.0, 4.0]])
LabelVectorType ArrayType(IntegerType) Class labels as integers (e.g., [0n, 1n, 0n, 2n])
ModelBlobType BlobType Serialized model (opaque, pass to predict functions)

Reference Documentation

  • API Reference - Complete function signatures, types, and config options
  • Examples - Working code examples by use case

Available Modules

Module Import Purpose
MADS import { MADS } from "@elaraai/east-py-datascience" Derivative-free blackbox optimization
Optuna import { Optuna } from "@elaraai/east-py-datascience" Bayesian optimization (hyperparameter tuning)
SimAnneal import { SimAnneal } from "@elaraai/east-py-datascience" Simulated annealing (permutation/subset)
Scipy import { Scipy } from "@elaraai/east-py-datascience" Statistics, optimization, interpolation
XGBoost import { XGBoost } from "@elaraai/east-py-datascience" Gradient boosting (regression/classification/quantile)
LightGBM import { LightGBM } from "@elaraai/east-py-datascience" Fast gradient boosting
NGBoost import { NGBoost } from "@elaraai/east-py-datascience" Probabilistic gradient boosting
Torch import { Torch } from "@elaraai/east-py-datascience" Neural networks (MLP)
Lightning import { Lightning } from "@elaraai/east-py-datascience" PyTorch Lightning neural networks
GP import { GP } from "@elaraai/east-py-datascience" Gaussian Process regression
Sklearn import { Sklearn } from "@elaraai/east-py-datascience" Preprocessing, metrics, data splitting
Shap import { Shap } from "@elaraai/east-py-datascience" Model explainability (SHAP values)

Accessing Types

import { MADS, Optuna, Sklearn, XGBoost } from "@elaraai/east-py-datascience";

// Access types via Module.Types.TypeName
MADS.Types.VectorType          // ArrayType(FloatType)
MADS.Types.BoundsType          // StructType({ lower, upper })
MADS.Types.ResultType          // StructType({ x_best, f_best, ... })

Optuna.Types.ParamSpaceType    // Parameter definition
Optuna.Types.StudyResultType   // Optimization result

Sklearn.Types.SplitConfigType  // Train/test split config
XGBoost.Types.ModelBlobType    // Trained model

Common Patterns

Train and Predict

// 1. Prepare data
const X = $.let([[...], [...], ...]);
const y = $.let([...]);

// 2. Configure and train
const config = $.let({ /* options with variant('some', value) or variant('none', null) */ });
const model = $.let(Module.train(X, y, config));

// 3. Predict
const predictions = $.let(Module.predict(model, X_test));

Optimization

// 1. Define objective function
const objective = East.function([VectorType], FloatType, ($, x) => {
    // compute and return objective value
});

// 2. Set bounds and config
const bounds = $.let({ lower: [...], upper: [...] });
const config = $.let({ /* options */ });

// 3. Optimize
const result = $.let(Module.optimize(objective, x0, bounds, config));
// result.x_best, result.f_best