| name | finwiz-security |
| description | Security and type safety standards for FinWiz including API key management, input validation, and mypy strict mode. Use when handling sensitive data, API keys, or implementing type safety. |
| allowed-tools | Read, Edit |
FinWiz Security & Type Safety Standards
Critical security practices and type safety requirements for FinWiz development.
Type Safety (mypy strict mode)
Required Type Annotations
All public functions and methods MUST have complete type annotations:
# ✅ CORRECT
def analyze_stock(ticker: str, period: int = 365) -> StockAnalysis:
return StockAnalysis(ticker=ticker, period=period)
def log_analysis(ticker: str) -> None:
logger.info(f"Analyzing {ticker}")
# ❌ WRONG - Missing return type
def analyze_stock(ticker: str):
return StockAnalysis(ticker=ticker)
Type Annotation Rules
- Return type required (use
-> Noneif no return) - All parameters must have type hints
- Use modern Python 3.12+ syntax:
str | Noneinstead ofOptional[str] - Use
list[Type]instead ofList[Type] - Use
# type: ignoreonly with explanatory comment
API Key Security (CRITICAL)
Environment Variables Only
NEVER hardcode API keys:
# ✅ CORRECT
import os
from dotenv import load_dotenv
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY environment variable not set")
# ❌ WRONG - Hardcoded
api_key = "sk-proj-abc123..."
Required Environment Variables
Core APIs (Required):
OPENAI_API_KEY- OpenAI APISERPER_API_KEY- Serper searchFIRECRAWL_API_KEY- Web scrapingALPHA_VANTAGE_API_KEY- Financial data
Enhanced Features (Optional):
TWELVE_DATA_API_KEY- Market data (technical analysis)PPLX_API_KEY- Perplexity search (enhanced research)SEC_API_API_KEY- SEC filings (optional)CHART_IMG_API_KEY- Chart generationCOINMARKETCAP_API_KEY- Cryptocurrency data
Logging Security
NEVER log full API keys:
# ✅ CORRECT - Masked (first 8 chars only)
logger.info(f"Using API key: {api_key[:8]}...")
# ❌ WRONG - Full key exposed
logger.info(f"API key: {api_key}")
Input Validation (Pydantic v2 strict)
All External Inputs Must Be Validated
from pydantic import BaseModel, Field, field_validator
class TickerInput(BaseModel):
"""Validate ticker input with strict security."""
model_config = {
"str_strip_whitespace": True,
"str_upper": True,
"extra": "forbid" # Reject unknown fields
}
symbol: str = Field(..., pattern=r'^[A-Z]{1,5}$')
@field_validator('symbol')
@classmethod
def validate_ticker(cls, v: str) -> str:
if not v.isalpha():
raise ValueError('Ticker must contain only letters')
return v.upper()
Validation Requirements
extra='forbid'- Reject unknown fieldsField()constraints - pattern, min_length, ge, le@field_validator- Complex validation logic- Sanitize inputs - Strip whitespace, normalize case
- Clear error messages - Actionable feedback
Data Privacy
Never Log Personal Financial Data
# ✅ CORRECT - Anonymized
logger.info(f"Analyzing portfolio with {len(holdings)} holdings")
# ❌ WRONG - Exposes personal data
logger.info(f"Analyzing portfolio: {holdings}")
Error Messages
Generic to users, detailed internally:
# ✅ CORRECT
try:
result = api_call(ticker)
except Exception as e:
logger.error(f"API call failed for {ticker}: {e}", exc_info=True)
raise ValueError("Unable to fetch data. Please try again later.")
# ❌ WRONG - Exposes internals
except Exception as e:
raise ValueError(f"API call to {api_url} failed: {e}")
Rate Limiting & Timeouts
Rate Limiting (Required)
from finwiz.utils.rate_limiter import RateLimiter
limiter = RateLimiter(max_calls=20, period=60)
@limiter.limit
async def fetch_stock_data(ticker: str) -> dict:
return await api_client.get(f"/stock/{ticker}")
Timeouts (Required)
Always set explicit timeouts:
# ✅ CORRECT
async with httpx.AsyncClient(timeout=30.0) as client:
response = await client.get(url)
# ❌ WRONG - Can hang indefinitely
async with httpx.AsyncClient() as client:
response = await client.get(url)
Secure Coding Patterns
SQL Injection Prevention
# ✅ CORRECT - Parameterized queries
cursor.execute(
"SELECT * FROM stocks WHERE ticker = %s",
(ticker,)
)
# ❌ WRONG - SQL injection risk
cursor.execute(f"SELECT * FROM stocks WHERE ticker = '{ticker}'")
Path Traversal Prevention
from pathlib import Path
# ✅ CORRECT - Validate paths
def read_report(filename: str) -> str:
# Validate filename
if not filename.replace('-', '').replace('_', '').isalnum():
raise ValueError("Invalid filename")
# Resolve path safely
base_path = Path("reports")
file_path = (base_path / filename).resolve()
# Ensure path is within base directory
if not str(file_path).startswith(str(base_path.resolve())):
raise ValueError("Path traversal attempt")
return file_path.read_text()
# ❌ WRONG - Path traversal risk
def read_report(filename: str) -> str:
with open(f"reports/{filename}") as f:
return f.read()
Command Injection Prevention
import subprocess
import shlex
# ✅ CORRECT - Safe command execution
def run_analysis(ticker: str) -> str:
# Validate input
if not ticker.isalpha():
raise ValueError("Invalid ticker")
# Use list form (safer)
result = subprocess.run(
["python", "analyze.py", ticker],
capture_output=True,
text=True,
timeout=30
)
return result.stdout
# ❌ WRONG - Command injection risk
def run_analysis(ticker: str) -> str:
result = subprocess.run(f"python analyze.py {ticker}", shell=True)
return result.stdout
Dependency Security
Dependency Scanning
# Check for known vulnerabilities
uv audit
# Update dependencies regularly
uv sync --upgrade
Secure Dependencies
- Keep dependencies updated
- Use dependency scanning tools
- Review third-party packages before adding
- Use lock files (uv.lock)
- Remove unused dependencies regularly
Infrastructure Security
HTTPS Configuration
# ✅ CORRECT - Force HTTPS
import httpx
client = httpx.AsyncClient(
verify=True, # Verify SSL certificates
timeout=30.0
)
# ❌ WRONG - Insecure connection
client = httpx.AsyncClient(verify=False)
Secure Headers
# Add security headers
headers = {
"X-Content-Type-Options": "nosniff",
"X-Frame-Options": "DENY",
"X-XSS-Protection": "1; mode=block",
"Strict-Transport-Security": "max-age=31536000; includeSubDomains"
}
Security Checklist
Before committing code:
- API keys in environment variables only
- No sensitive data in logs (mask keys, anonymize financial data)
- All inputs validated with Pydantic strict models
- All public functions have type annotations
- Rate limiting configured for API calls
- Timeouts set for all external requests (30s default)
- Error messages generic to users, detailed internally
- No hardcoded credentials
- mypy passes with no errors
- Dependencies scanned for vulnerabilities
Quick Reference
| Security Concern | Solution |
|---|---|
| API keys | Environment variables + validation at startup |
| Sensitive logs | Mask keys (first 8 chars), anonymize financial data |
| Input validation | Pydantic v2 strict mode with extra='forbid' |
| Type safety | Full annotations, mypy strict mode |
| Rate limits | RateLimiter decorator, CrewAI max_rpm=20 |
| Timeouts | httpx.AsyncClient(timeout=30.0) |
| Error messages | Generic to users, detailed to logs |
| SQL injection | Parameterized queries |
| Path traversal | Path validation and resolution |
| Command injection | List form subprocess calls |
Development Practices
Secure Development Lifecycle
- Use static code analysis tools (ruff, mypy)
- Implement security testing in CI/CD
- Code reviews for security issues
- Security training for developers
- Incident response procedures
Monitoring and Logging
- Log security events (failed auth, suspicious activity)
- Monitor for unusual patterns
- Set up alerts for security incidents
- Regular security audits
- Penetration testing
Apply these security standards consistently across all FinWiz development to protect sensitive financial data and maintain system integrity.