| name | langchain-deep-research |
| description | Run LangChain Open Deep Research agent for iterative web research and comprehensive reports. Requires LLM API keys and search API (e.g., OPENAI_API_KEY, TAVILY_API_KEY). |
LangChain Open Deep Research Skill
This skill utilizes the LangChain Open Deep Research framework to perform iterative web research with reflection and knowledge gap identification, producing comprehensive reports with citations.
Setup
Dependencies: Requires the
open-deep-researchpackage and LangGraph.pip install open-deep-research langgraph-cli python-dotenvAPI Key Configuration: Requires API keys for an LLM and a search provider.
# Set up your API keys echo "# LLM Configuration" >> .env echo "OPENAI_API_KEY=your_openai_key" >> .env echo "# Search Configuration" >> .env echo "TAVILY_API_KEY=your_tavily_key" >> .env if [ -f .gitignore ] && ! grep -q ".env" .gitignore; then echo ".env" >> .gitignore; fi echo "API keys saved to .env."
Usage
Use the scripts/research.py script to run a research task.
Command
python3 scripts/research.py --query "<research_query>" [--max-iterations <N>]
Parameters
--query(Required): The research question or topic.--max-iterations(Optional): Maximum number of research iterations (default: 3).--output(Optional): Output file path for the final report (default: stdout).
Example
python3 scripts/research.py --query "What are the latest developments in quantum computing error correction?" --max-iterations 4 --output report.md
Output
The script outputs a comprehensive research report with:
- Iterative search findings
- Knowledge gap analysis
- Final synthesized report with citations
- Source list
Features
- Iterative Research: Performs multiple search cycles, reflecting on gaps
- Configurable Models: Supports OpenAI, Anthropic, Ollama, and other LLM providers
- Multiple Search Engines: Tavily (default), Brave, DuckDuckGo, SerpAPI
- Citation Tracking: All findings include source references