Claude Code Plugins

Community-maintained marketplace

Feedback
2
0

Reviews LangGraph code for bugs, anti-patterns, and improvements. Use when reviewing code that uses StateGraph, nodes, edges, checkpointing, or other LangGraph features. Catches common mistakes in state management, graph structure, and async patterns.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name langgraph-code-review
description Reviews LangGraph code for bugs, anti-patterns, and improvements. Use when reviewing code that uses StateGraph, nodes, edges, checkpointing, or other LangGraph features. Catches common mistakes in state management, graph structure, and async patterns.

LangGraph Code Review

When reviewing LangGraph code, check for these categories of issues.

Critical Issues

1. State Mutation Instead of Return

# BAD - mutates state directly
def my_node(state: State) -> None:
    state["messages"].append(new_message)  # Mutation!

# GOOD - returns partial update
def my_node(state: State) -> dict:
    return {"messages": [new_message]}  # Let reducer handle it

2. Missing Reducer for List Fields

# BAD - no reducer, each node overwrites
class State(TypedDict):
    messages: list  # Will be overwritten, not appended!

# GOOD - reducer appends
class State(TypedDict):
    messages: Annotated[list, operator.add]
    # Or use add_messages for chat:
    messages: Annotated[list, add_messages]

3. Wrong Return Type from Conditional Edge

# BAD - returns invalid node name
def router(state) -> str:
    return "nonexistent_node"  # Runtime error!

# GOOD - use Literal type hint for safety
def router(state) -> Literal["agent", "tools", "__end__"]:
    if condition:
        return "agent"
    return END  # Use constant, not string

4. Missing Checkpointer for Interrupts

# BAD - interrupt without checkpointer
def my_node(state):
    answer = interrupt("question")  # Will fail!
    return {"answer": answer}

graph = builder.compile()  # No checkpointer!

# GOOD - checkpointer required for interrupts
graph = builder.compile(checkpointer=InMemorySaver())

5. Forgetting Thread ID with Checkpointer

# BAD - no thread_id
graph.invoke({"messages": [...]})  # Error with checkpointer!

# GOOD - always provide thread_id
config = {"configurable": {"thread_id": "user-123"}}
graph.invoke({"messages": [...]}, config)

State Schema Issues

6. Using add_messages Without Message Types

# BAD - add_messages expects message-like objects
class State(TypedDict):
    messages: Annotated[list, add_messages]

def node(state):
    return {"messages": ["plain string"]}  # May fail!

# GOOD - use proper message types or tuples
def node(state):
    return {"messages": [("assistant", "response")]}
    # Or: [AIMessage(content="response")]

7. Returning Full State Instead of Partial

# BAD - returns entire state (may reset other fields)
def my_node(state: State) -> State:
    return {
        "counter": state["counter"] + 1,
        "messages": state["messages"],  # Unnecessary!
        "other": state["other"]          # Unnecessary!
    }

# GOOD - return only changed fields
def my_node(state: State) -> dict:
    return {"counter": state["counter"] + 1}

8. Pydantic State Without Annotations

# BAD - Pydantic model without reducer loses append behavior
class State(BaseModel):
    messages: list  # No reducer!

# GOOD - use Annotated even with Pydantic
class State(BaseModel):
    messages: Annotated[list, add_messages]

Graph Structure Issues

9. Missing Entry Point

# BAD - no edge from START
builder.add_node("process", process_fn)
builder.add_edge("process", END)
graph = builder.compile()  # Error: no entrypoint!

# GOOD - connect START
builder.add_edge(START, "process")

10. Unreachable Nodes

# BAD - orphan node
builder.add_node("main", main_fn)
builder.add_node("orphan", orphan_fn)  # Never reached!
builder.add_edge(START, "main")
builder.add_edge("main", END)

# Check with visualization
print(graph.get_graph().draw_mermaid())

11. Conditional Edge Without All Paths

# BAD - missing path in conditional
def router(state) -> Literal["a", "b", "c"]:
    ...

builder.add_conditional_edges("node", router, {"a": "a", "b": "b"})
# "c" path missing!

# GOOD - include all possible returns
builder.add_conditional_edges("node", router, {"a": "a", "b": "b", "c": "c"})
# Or omit path_map to use return values as node names

12. Command Without destinations

# BAD - Command return without destinations (breaks visualization)
def dynamic(state) -> Command[Literal["next", "__end__"]]:
    return Command(goto="next")

builder.add_node("dynamic", dynamic)  # Graph viz won't show edges

# GOOD - declare destinations
builder.add_node("dynamic", dynamic, destinations=["next", END])

Async Issues

13. Mixing Sync/Async Incorrectly

# BAD - async node called with sync invoke
async def my_node(state):
    result = await async_operation()
    return {"result": result}

graph.invoke(input)  # May not await properly!

# GOOD - use ainvoke for async graphs
await graph.ainvoke(input)
# Or provide both sync and async versions

14. Blocking Calls in Async Context

# BAD - blocking call in async node
async def my_node(state):
    result = requests.get(url)  # Blocks event loop!
    return {"result": result}

# GOOD - use async HTTP client
async def my_node(state):
    async with httpx.AsyncClient() as client:
        result = await client.get(url)
    return {"result": result}

Tool Integration Issues

15. Tool Calls Without Corresponding ToolMessage

# BAD - AI message with tool_calls but no tool execution
messages = [
    HumanMessage(content="search for X"),
    AIMessage(content="", tool_calls=[{"id": "1", "name": "search", ...}])
    # Missing ToolMessage! Next LLM call will fail
]

# GOOD - always pair tool_calls with ToolMessage
messages = [
    HumanMessage(content="search for X"),
    AIMessage(content="", tool_calls=[{"id": "1", "name": "search", ...}]),
    ToolMessage(content="results", tool_call_id="1")
]

16. Parallel Tool Calls Before Interrupt

# BAD - model may call multiple tools including interrupt
model = ChatOpenAI().bind_tools([interrupt_tool, other_tool])
# If both called in parallel, interrupt behavior is undefined

# GOOD - disable parallel tool calls before interrupt
model = ChatOpenAI().bind_tools(
    [interrupt_tool, other_tool],
    parallel_tool_calls=False
)

Checkpointing Issues

17. InMemorySaver in Production

# BAD - in-memory checkpointer loses state on restart
graph = builder.compile(checkpointer=InMemorySaver())  # Testing only!

# GOOD - use persistent storage in production
from langgraph.checkpoint.postgres import PostgresSaver
checkpointer = PostgresSaver.from_conn_string(conn_string)
graph = builder.compile(checkpointer=checkpointer)

18. Subgraph Checkpointer Confusion

# BAD - subgraph with explicit False prevents persistence
subgraph = sub_builder.compile(checkpointer=False)

# GOOD - use None to inherit parent's checkpointer
subgraph = sub_builder.compile(checkpointer=None)  # Inherits from parent
# Or True for independent checkpointing
subgraph = sub_builder.compile(checkpointer=True)

Performance Issues

19. Large State in Every Update

# BAD - returning large data in every node
def node(state):
    large_data = fetch_large_data()
    return {"large_field": large_data}  # Checkpointed every step!

# GOOD - use references or store
from langgraph.store.memory import InMemoryStore

def node(state, *, store: BaseStore):
    store.put(namespace, key, large_data)
    return {"data_ref": f"{namespace}/{key}"}

20. Missing Recursion Limit Handling

# BAD - no protection against infinite loops
def router(state):
    return "agent"  # Always loops!

# GOOD - check remaining steps or use RemainingSteps
from langgraph.managed import RemainingSteps

class State(TypedDict):
    messages: Annotated[list, add_messages]
    remaining_steps: RemainingSteps

def check_limit(state):
    if state["remaining_steps"] < 2:
        return END
    return "continue"

Code Review Checklist

  1. State schema uses Annotated with reducers for collections
  2. Nodes return partial state updates, not mutations
  3. Conditional edges return valid node names or END
  4. Graph has path from START to all nodes
  5. Checkpointer provided if using interrupts
  6. Thread ID provided in config when using checkpointer
  7. Tool calls paired with ToolMessages
  8. Async nodes use async operations
  9. Production uses persistent checkpointer
  10. Recursion limits considered for loops