name: mastering-postgresql description: PostgreSQL development for Python with full-text search (tsvector, tsquery, BM25 via pg_search), vector similarity (pgvector with HNSW/IVFFlat), JSONB and array indexing, and production deployment. Use when creating search features, storing AI embeddings, querying vector similarity, optimizing PostgreSQL indexes, or deploying to AWS RDS/Aurora, GCP Cloud SQL/AlloyDB, or Azure. Covers psycopg2, psycopg3, asyncpg, SQLAlchemy integration, Docker development setup, and index selection strategies. Triggers: "PostgreSQL search", "pgvector", "BM25 postgres", "JSONB index", "psycopg", "asyncpg", "PostgreSQL Docker", "AlloyDB vector". Does NOT cover: DBA administration (backup, replication, users), MySQL/MongoDB/Redis, schema design theory, stored procedures. allowed-tools: - Read - Bash - Write
PostgreSQL Python Development
Build search, vector similarity, and data-intensive applications with PostgreSQL and Python.
Quick Reference
| Task | Go To |
|---|---|
| Docker/local setup | setup-and-docker.md |
| Full-text search & BM25 | search-fulltext.md |
| pgvector & JSONB indexing | search-vectors-json.md |
| Python drivers & pools | python-drivers.md |
| Python query patterns | python-queries.md |
| AWS RDS/Aurora | cloud-aws.md |
| GCP Cloud SQL/AlloyDB | cloud-gcp.md |
| Azure Flexible Server | cloud-azure.md |
| Neon & Supabase | cloud-serverless.md |
| Cloud common (pooling, config) | cloud-common.md |
When NOT to Use This Skill
- DBA tasks: Backup strategies, replication setup, user management, security hardening
- Other databases: MySQL, MongoDB, Redis, Elasticsearch-specific queries
- Schema design: Normalization theory, data modeling patterns
- Stored procedures: PL/pgSQL function development
- Application frameworks: Django ORM specifics, FastAPI integration details
Quick Start Checklist
Copy this checklist to track progress:
Setup Progress:
- [ ] Docker environment running (docker-compose up -d)
- [ ] Connected to database (psql or Python)
- [ ] Extensions created (pgvector, pg_trgm)
- [ ] Table created with search_vector and embedding columns
- [ ] GIN index on search_vector created
- [ ] HNSW index on embedding created
- [ ] Test full-text query returns results
- [ ] Test vector query returns results
Quick Start: Search + Vectors in 5 Minutes
1. Start PostgreSQL with pgvector
# docker-compose.yml
services:
postgres:
image: pgvector/pgvector:pg17
environment:
POSTGRES_PASSWORD: devpass
ports: ["5432:5432"]
volumes: [pgdata:/var/lib/postgresql/data]
volumes:
pgdata:
docker-compose up -d
# Verify container is running:
docker-compose ps
# Expected: postgres service with status "Up"
2. Enable Extensions
CREATE EXTENSION vector; -- pgvector for embeddings
CREATE EXTENSION pg_trgm; -- Trigram for fuzzy search
-- Verify extensions installed:
SELECT extname, extversion FROM pg_extension
WHERE extname IN ('vector', 'pg_trgm');
-- Expected: 2 rows with version numbers
3. Create Searchable Table with Vectors
CREATE TABLE documents (
id BIGSERIAL PRIMARY KEY,
title TEXT NOT NULL,
content TEXT,
embedding vector(1536),
search_vector tsvector GENERATED ALWAYS AS (
setweight(to_tsvector('english', coalesce(title, '')), 'A') ||
setweight(to_tsvector('english', coalesce(content, '')), 'B')
) STORED
);
-- Create indexes
CREATE INDEX idx_docs_search ON documents USING GIN (search_vector);
CREATE INDEX idx_docs_embedding ON documents USING hnsw (embedding vector_cosine_ops);
-- Verify indexes created:
SELECT indexname FROM pg_indexes WHERE tablename = 'documents';
-- Expected: idx_docs_search, idx_docs_embedding, documents_pkey
4. Query from Python
import asyncpg
async def search(pool, query: str, embedding: list[float], limit: int = 10):
return await pool.fetch("""
SELECT id, title,
ts_rank(search_vector, websearch_to_tsquery('english', $1)) AS text_rank,
embedding <=> $2::vector AS vector_dist
FROM documents
WHERE search_vector @@ websearch_to_tsquery('english', $1)
ORDER BY vector_dist
LIMIT $3
""", query, embedding, limit)
# Verify connection works:
# pool = await asyncpg.create_pool('postgresql://postgres:devpass@localhost/postgres')
# rows = await pool.fetch("SELECT 1 AS test")
# assert rows[0]['test'] == 1
Decision Trees
Which Search Approach?
Need search? ─┬─► Exact keyword match ──────► B-tree index + WHERE =
│
├─► Full-text search (FTS) ───► tsvector + GIN + ts_rank
│
├─► Relevance like Google ────► pg_search BM25 (ParadeDB)
│
├─► Typo tolerance ───────────► pg_trgm + similarity()
│
├─► Semantic/AI search ───────► pgvector + embeddings
│
└─► Hybrid (keywords + semantic) ► Combine tsvector + pgvector
Which Vector Index?
Vector index? ─┬─► Dataset < 100K rows ────► No index (exact search OK)
│
├─► Need best recall ────────► HNSW (slower build, fast query)
│
├─► Fast index build ────────► IVFFlat (needs data first)
│
├─► On AlloyDB ──────────────► ScaNN (Google optimized)
│
├─► On Azure ────────────────► pg_diskann (32x less memory)
│
├─► Billions of vectors ─────► VectorChord vchordrq (self-host)
│
└─► Dimensions > 2000 ───────► halfvec or binary quantization
Which Python Library?
Python lib? ──┬─► Sync, simple, stable ─────► psycopg2
│
├─► Async + modern features ──► psycopg3
│
├─► Max async performance ────► asyncpg
│
└─► ORM needed ───────────────► SQLAlchemy + asyncpg/psycopg
Which Index Type for Column?
Column type? ─┬─► Scalar (int, text, timestamp) ─► B-tree (default)
│
├─► JSONB ────────────────────────┬► GIN (general queries)
│ └► GIN jsonb_path_ops (@> only)
│
├─► Array ────────────────────────► GIN
│
├─► tsvector ─────────────────────► GIN (or GiST for updates)
│
├─► vector ───────────────────────► HNSW or IVFFlat
│
└─► Range / Geometric ────────────► GiST
Common Patterns
For implementation details, see the reference files:
| Pattern | Reference |
|---|---|
| Full-text search with ranking | search-fulltext.md#ranking-functions |
| BM25 search | search-fulltext.md#bm25-with-pg_search |
| Vector similarity | search-vectors-json.md#distance-operators |
| JSONB containment | search-vectors-json.md#jsonb-indexing |
| Array overlap | search-vectors-json.md#array-indexing |
| Bulk insert | python-queries.md#bulk-insert-strategies |
| Connection pool | python-drivers.md#asyncpg-async-only |
Index Tuning Quick Reference
HNSW Parameters
| Parameter | Default | Guidance |
|---|---|---|
m |
16 | Higher = better recall, more memory. 12-48 typical |
ef_construction |
64 | Higher = better index quality, slower build. 64-200 |
hnsw.ef_search |
40 | Set at query time. Higher = better recall, slower |
CREATE INDEX ON docs USING hnsw (embedding vector_cosine_ops) WITH (m=16, ef_construction=100);
SET hnsw.ef_search = 100; -- Before querying
-- Verify setting applied:
SHOW hnsw.ef_search;
IVFFlat Parameters
| Parameter | Guidance |
|---|---|
lists |
sqrt(rows) for <1M rows; rows/1000 for >1M |
ivfflat.probes |
Start at sqrt(lists), increase for recall |
CREATE INDEX ON docs USING ivfflat (embedding vector_l2_ops) WITH (lists=100);
SET ivfflat.probes = 10;
Troubleshooting Quick Reference
| Symptom | Likely Cause | Fix |
|---|---|---|
| Seq Scan on indexed column | Stats outdated | ANALYZE tablename; |
| Vector search slow | No index or low ef_search | Create HNSW index, increase ef_search |
| Poor vector recall | IVFFlat probes too low | Increase ivfflat.probes |
| FTS not matching | Wrong language config | Check to_tsvector('english', ...) |
| Index not used | Query doesn't match ops | Verify operator class matches query |
| Connection timeout | Pool exhausted | Increase pool size or fix leaks |
| Extension not found | Not installed | CREATE EXTENSION name; |
| HNSW build OOM | Insufficient memory | Increase maintenance_work_mem |
| Filtered queries return few results | Filtering after index scan | Enable hnsw.iterative_scan |
| Connection drops in production | No health checking | Use check=ConnectionPool.check_connection |
| Scaling past 100M vectors | pgvector limits | Consider VectorChord vchordrq |
For detailed troubleshooting, see search-vectors-json.md.
Script Usage
pip install -r scripts/requirements.txt # Install dependencies first
| Script | Purpose | When to Use |
|---|---|---|
setup_extensions.py |
Install pgvector, pg_trgm extensions | Initial database setup |
create_search_tables.py |
Create tables with search_vector and embedding columns | After extensions installed |
health_check.py |
Check index health, bloat, and performance | Diagnosing slow queries |
vector_search.py --demo |
Demonstrate vector similarity queries | Learning pgvector patterns |
bulk_insert.py |
High-performance data loading | Importing large datasets |
fts_examples.py |
Full-text search query examples | Learning FTS syntax |
connection_pool.py |
Connection pooling patterns | Production deployments |
Example:
python scripts/setup_extensions.py --host localhost --dbname mydb
python scripts/create_search_tables.py --host localhost --dbname mydb
python scripts/health_check.py --host localhost --dbname mydb
Cloud Quick Reference
| Provider | pgvector | BM25 Support | Connection Pooling |
|---|---|---|---|
| AWS RDS/Aurora | 0.8.0 | pg_textsearch (preview) | RDS Proxy |
| GCP Cloud SQL | 0.8.0 | pg_textsearch (preview) | Cloud SQL Proxy |
| GCP AlloyDB | 0.8.0 + ScaNN | pg_textsearch (preview) | Built-in |
| Azure Flexible | 0.8.0 + pg_diskann | pg_textsearch (preview) | Built-in PgBouncer |
| Neon | ✅ | pg_search | Built-in |
| Supabase | ✅ | pg_search | Built-in |
Serverless options: Neon (scale-to-zero, instant branching) and Supabase (BaaS with auth/real-time) are ideal for dev/test and startups. See cloud-serverless.md.
BM25 Options:
- pg_search (ParadeDB): Production-ready, self-host or ParadeDB managed service
- pg_textsearch (TigerData): Preview status, available on managed PostgreSQL services
See provider-specific files for setup commands: AWS | GCP | Azure
Reference Files
Load these for detailed implementation guidance:
| Reference | Load When |
|---|---|
| setup-and-docker.md | Docker setup, extension installation, postgresql.conf tuning |
| search-fulltext.md | Full-text search (FTS), BM25 setup, trigram fuzzy search |
| search-vectors-json.md | pgvector tuning, JSONB/array indexing, maintenance |
| python-drivers.md | psycopg2/psycopg3/asyncpg, connection pools, SQLAlchemy |
| python-queries.md | Bulk inserts, FTS queries, vector queries, JSONB operations |
| cloud-aws.md | AWS RDS/Aurora setup, RDS Proxy |
| cloud-gcp.md | GCP Cloud SQL/AlloyDB, ScaNN indexes |
| cloud-azure.md | Azure Flexible Server, pg_diskann |
| cloud-serverless.md | Neon, Supabase (scale-to-zero, branching) |
| cloud-common.md | Extension matrix, pooling, production config, costs |