Claude Code Plugins

Community-maintained marketplace

Feedback

Explain ML model predictions using SHAP values, feature importance, and decision paths with visualizations.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ml-model-explainer
description Explain ML model predictions using SHAP values, feature importance, and decision paths with visualizations.

ML Model Explainer

Explain machine learning model predictions using SHAP and feature importance.

Features

  • SHAP Values: Explain individual predictions
  • Feature Importance: Global feature rankings
  • Decision Paths: Trace prediction logic
  • Visualizations: Waterfall, force plots, summary plots
  • Multiple Models: Support for tree-based, linear, neural networks
  • Batch Explanations: Explain multiple predictions

Quick Start

from ml_model_explainer import MLModelExplainer

explainer = MLModelExplainer()
explainer.load_model(model, X_train)

# Explain single prediction
explanation = explainer.explain(X_test[0])
explainer.plot_waterfall('explanation.png')

# Feature importance
importance = explainer.feature_importance()

CLI Usage

python ml_model_explainer.py --model model.pkl --data test.csv --output explanations/

Dependencies

  • shap>=0.42.0
  • scikit-learn>=1.3.0
  • pandas>=2.0.0
  • numpy>=1.24.0
  • matplotlib>=3.7.0