| name | web-summary |
| description | Summarize web content including YouTube videos with semantic topic links for Logseq and Obsidian. Uses Z.AI service (port 9600) for cost-effective summarization. Supports markdown, plain text, and note-taking formats. |
| version | 2.0.0 |
| author | turbo-flow-claude |
| mcp_server | true |
| protocol | fastmcp |
| entry_point | mcp-server/server.py |
| dependencies | httpx, youtube-transcript-api |
Web Summary Skill
URL content summarization and topic extraction via FastMCP, using Z.AI service for LLM processing.
When to Use This Skill
- Summarize web articles, blog posts, documentation
- Extract and summarize YouTube video transcripts
- Generate semantic topic links for note-taking (Logseq, Obsidian)
- Create short, medium, or long summaries
- Extract key concepts from text
Architecture
┌─────────────────────────────┐
│ Claude Code / VisionFlow │
│ (MCP Client) │
└──────────────┬──────────────┘
│ MCP Protocol (stdio)
▼
┌─────────────────────────────┐
│ Web Summary MCP Server │
│ (FastMCP - Python only) │
└──────────────┬──────────────┘
│ HTTP (port 9600)
▼
┌─────────────────────────────┐
│ Z.AI Service │
│ (Cost-effective Claude) │
└─────────────────────────────┘
Tools
| Tool | Description |
|---|---|
summarize_url |
Summarize content from any URL (web or YouTube) |
youtube_transcript |
Extract full transcript from YouTube video |
generate_topics |
Generate semantic topic links from text |
health_check |
Verify Z.AI service connectivity |
Examples
# Summarize a web article
summarize_url({
"url": "https://example.com/article",
"length": "medium",
"include_topics": True,
"format": "logseq"
})
# Get YouTube transcript
youtube_transcript({
"video_id": "dQw4w9WgXcQ", # or full URL
"language": "en"
})
# Generate topic links
generate_topics({
"text": "Your text content here...",
"max_topics": 10,
"format": "obsidian"
})
Output Formats
Logseq
- [[Topic One]]
- [[Topic Two]]
- [[Machine Learning]]
Obsidian
- [[Topic One]]
- [[Topic Two]]
- [[Machine Learning]]
Plain
- Topic One
- Topic Two
- Machine Learning
Environment Variables
| Variable | Default | Description |
|---|---|---|
ZAI_URL |
http://localhost:9600/chat |
Z.AI service endpoint |
ZAI_TIMEOUT |
60 |
Request timeout in seconds |
Troubleshooting
Z.AI connection failed:
# Check Z.AI service status
supervisorctl status claude-zai
# Test Z.AI directly
curl -X POST http://localhost:9600/chat \
-H "Content-Type: application/json" \
-d '{"prompt": "Hello"}'
VisionFlow Integration
This skill exposes web-summary://capabilities resource for discovery by VisionFlow's MCP TCP client on port 9500.