| name | claude-sdk-integration-patterns |
| description | Expert integration patterns for Claude API and TypeScript SDK covering Messages API, streaming responses, tool use, error handling, token optimization, and production-ready implementations for building AI-powered applications |
Claude SDK Integration Patterns
Production-ready patterns for integrating Claude API and TypeScript SDK into applications. Master streaming responses, tool execution, error handling, and optimization strategies for AI-powered features.
When to Use This Skill
Use this skill when you need to:
- Integrate Claude API into Node.js/TypeScript applications
- Implement streaming conversations with real-time responses
- Build applications with Claude tool use (function calling)
- Handle API errors gracefully with retry logic
- Optimize token usage and manage costs
- Deploy Claude-powered features to production
- Build multi-turn conversations with context management
- Implement message batching for high-volume processing
Core Concepts
Messages API Fundamentals
The Claude Messages API is the primary interface for conversational AI:
Key Components:
- Model Selection: Choose appropriate model (Opus, Sonnet, Haiku)
- Messages Array: Conversation history with user/assistant roles
- Max Tokens: Control response length
- System Prompts: Guide model behavior
- Streaming: Real-time response generation
SDK Architecture
The TypeScript SDK provides:
- Type-safe API client
- Streaming helpers for real-time responses
- Tool execution framework
- Error handling utilities
- Message batch processing
- Event-driven architecture
Installation and Setup
# Install the SDK
npm install @anthropic-ai/sdk
# Or with yarn
yarn add @anthropic-ai/sdk
import Anthropic from '@anthropic-ai/sdk';
// Initialize client
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
});
Messages API Patterns
Pattern 1: Basic Message Creation
const message = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [
{ role: 'user', content: 'Hello, Claude!' }
],
});
console.log(message.content);
When to use:
- Simple question-answer interactions
- One-off API calls
- Synchronous workflows
Pattern 2: Multi-Turn Conversations
const messages = [
{ role: 'user', content: 'What is TypeScript?' },
{ role: 'assistant', content: 'TypeScript is a typed superset of JavaScript...' },
{ role: 'user', content: 'Give me an example' },
];
const response = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages,
});
When to use:
- Chatbots and conversational UIs
- Multi-step workflows
- Context-dependent interactions
Pattern 3: System Prompts
const response = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
system: 'You are a helpful Python programming assistant. Provide concise, tested code examples.',
messages: [
{ role: 'user', content: 'How do I read a CSV file?' }
],
});
When to use:
- Specialized assistants
- Role-playing scenarios
- Consistent behavior across conversations
Streaming Patterns
Pattern 4: Basic Streaming
const stream = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Write a story' }],
stream: true,
});
for await (const event of stream) {
if (event.type === 'content_block_delta' && event.delta.type === 'text_delta') {
process.stdout.write(event.delta.text);
}
}
When to use:
- Real-time user interfaces
- Long-form content generation
- Interactive experiences
Pattern 5: Streaming with Event Handlers
const stream = anthropic.messages.stream({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Explain quantum computing' }],
})
.on('text', (text) => {
console.log(text);
})
.on('message', (message) => {
console.log('Complete message:', message);
})
.on('error', (error) => {
console.error('Stream error:', error);
});
const finalMessage = await stream.finalMessage();
When to use:
- Real-time UIs (chatbots, live editors)
- Progress indicators
- Partial result processing
Pattern 6: Streaming with Abort Control
const stream = anthropic.messages.stream({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Long task...' }],
});
// Abort after timeout
setTimeout(() => stream.abort(), 5000);
try {
await stream.done();
} catch (error) {
if (error instanceof Anthropic.APIUserAbortError) {
console.log('Stream aborted by user');
}
}
When to use:
- User-cancellable operations
- Timeout handling
- Resource management
Tool Use Patterns
Pattern 7: Tool Definition with Zod
import { betaZodTool } from '@anthropic-ai/sdk/helpers/zod';
import { z } from 'zod';
const weatherTool = betaZodTool({
name: 'get_weather',
inputSchema: z.object({
location: z.string(),
unit: z.enum(['celsius', 'fahrenheit']).default('fahrenheit'),
}),
description: 'Get current weather for a location',
run: async (input) => {
// Call weather API
return `Weather in ${input.location}: 72°F, sunny`;
},
});
When to use:
- Type-safe tool definitions
- Input validation
- Clear tool contracts
Pattern 8: Tool Runner for Automatic Execution
const finalMessage = await anthropic.beta.messages.toolRunner({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1000,
messages: [
{ role: 'user', content: 'What\'s the weather in San Francisco?' }
],
tools: [weatherTool],
});
console.log(finalMessage.content);
When to use:
- Automated tool execution
- AI agents with function calling
- Complex multi-step workflows
Pattern 9: Streaming Tool Execution
const runner = anthropic.beta.messages.toolRunner({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1000,
messages: [{ role: 'user', content: 'Check weather and calculate travel time' }],
tools: [weatherTool, travelTimeTool],
stream: true,
});
for await (const messageStream of runner) {
for await (const event of messageStream) {
console.log('Event:', event);
}
console.log('Message:', await messageStream.finalMessage());
}
When to use:
- Real-time tool execution feedback
- Multi-tool workflows
- Interactive AI agents
Error Handling Patterns
Pattern 10: Comprehensive Error Handling
async function createMessage(prompt: string) {
try {
const message = await anthropic.messages.create({
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: prompt }],
});
return message;
} catch (error) {
if (error instanceof Anthropic.APIError) {
console.error('API Error:', {
status: error.status,
name: error.name,
message: error.message,
headers: error.headers,
});
// Handle specific errors
if (error.status === 429) {
// Rate limit - implement backoff
console.log('Rate limited, waiting...');
await new Promise(resolve => setTimeout(resolve, 60000));
return createMessage(prompt); // Retry
} else if (error.status === 401) {
throw new Error('Invalid API key');
} else if (error.status === 400) {
throw new Error(`Bad request: ${error.message}`);
}
}
throw error;
}
}
When to use:
- Production applications
- Robust error recovery
- User-facing applications
Pattern 11: Exponential Backoff Retry
async function createWithRetry(
params: Anthropic.MessageCreateParams,
maxRetries = 3,
baseDelay = 1000
): Promise<Anthropic.Message> {
for (let attempt = 0; attempt < maxRetries; attempt++) {
try {
return await anthropic.messages.create(params);
} catch (error) {
if (error instanceof Anthropic.APIError && error.status === 429) {
// Rate limit - exponential backoff
const delay = baseDelay * Math.pow(2, attempt);
console.log(`Retry attempt ${attempt + 1} after ${delay}ms`);
await new Promise(resolve => setTimeout(resolve, delay));
} else {
throw error;
}
}
}
throw new Error('Max retries exceeded');
}
When to use:
- High-volume applications
- Rate limit handling
- Network reliability
Token Optimization Patterns
Pattern 12: Token Counting
import { encode } from 'gpt-tokenizer';
function estimateTokens(text: string): number {
// Approximate token count (Claude uses similar tokenization to GPT)
return encode(text).length;
}
function optimizePrompt(userMessage: string, maxTokens: number = 1024): string {
const tokens = estimateTokens(userMessage);
if (tokens > maxTokens) {
// Truncate or summarize
return userMessage.slice(0, maxTokens * 4); // Rough char estimate
}
return userMessage;
}
When to use:
- Cost optimization
- Token budget management
- Large input handling
Pattern 13: Context Window Management
interface ConversationMessage {
role: 'user' | 'assistant';
content: string;
tokens?: number;
}
class ConversationManager {
private messages: ConversationMessage[] = [];
private maxContextTokens = 100000;
addMessage(role: 'user' | 'assistant', content: string) {
const tokens = estimateTokens(content);
this.messages.push({ role, content, tokens });
this.pruneIfNeeded();
}
private pruneIfNeeded() {
const totalTokens = this.messages.reduce((sum, msg) => sum + (msg.tokens || 0), 0);
if (totalTokens > this.maxContextTokens) {
// Remove oldest messages (keep system prompt if present)
this.messages = this.messages.slice(-10); // Keep last 10 messages
}
}
getMessages() {
return this.messages.map(({ role, content }) => ({ role, content }));
}
}
When to use:
- Long conversations
- Context management
- Cost control
Message Batching Patterns
Pattern 14: Batch Processing
const batchResult = await anthropic.messages.batches.create({
requests: [
{
custom_id: 'request-1',
params: {
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Summarize this article...' }],
},
},
{
custom_id: 'request-2',
params: {
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Translate this text...' }],
},
},
],
});
// Poll for results
const batch = await anthropic.messages.batches.retrieve(batchResult.id);
When to use:
- Bulk processing
- Offline workflows
- Cost optimization (lower batch pricing)
Production Patterns
Pattern 15: Request Timeout Configuration
const anthropic = new Anthropic({
apiKey: process.env.ANTHROPIC_API_KEY,
timeout: 60000, // 60 seconds
maxRetries: 3,
});
When to use:
- Production deployments
- Network reliability
- Resource management
Pattern 16: Custom Headers and Metadata
const message = await anthropic.messages.create(
{
model: 'claude-sonnet-4-5-20250929',
max_tokens: 1024,
messages: [{ role: 'user', content: 'Hello' }],
},
{
headers: {
'anthropic-beta': 'max-tokens-3-5-sonnet-2024-07-15',
},
}
);
When to use:
- Beta features
- Custom tracking
- A/B testing
Best Practices
API Key Management
Never hardcode API keys
// ❌ Bad const anthropic = new Anthropic({ apiKey: 'sk-ant-...' }); // ✅ Good const anthropic = new Anthropic({ apiKey: process.env.ANTHROPIC_API_KEY });Use environment variables
# .env file ANTHROPIC_API_KEY=sk-ant-your-key-here
Model Selection
Choose appropriate model for task:
- Opus: Most capable, complex reasoning
- Sonnet: Balanced performance/speed
- Haiku: Fastest, simple tasks
Use latest model versions:
model: 'claude-sonnet-4-5-20250929' // Latest
Streaming Considerations
Always use streaming for:
- User-facing applications
- Long-form content (>500 tokens)
- Real-time interactions
Avoid streaming for:
- Backend batch processing
- Deterministic outputs needed upfront
- Simple API integrations
Error Handling
- Always catch API errors
- Implement retry logic for transient failures
- Log errors for debugging
- Provide user-friendly error messages
Token Management
- Estimate tokens before API calls
- Set appropriate max_tokens
- Monitor token usage
- Implement context pruning for long conversations
Troubleshooting
Issue: Rate Limit Errors (429)
Solution:
- Implement exponential backoff
- Use message batching for bulk operations
- Upgrade to higher rate limit tier
Issue: Timeout Errors
Solution:
- Use streaming for long responses
- Increase timeout configuration
- Reduce max_tokens
Issue: Invalid API Key (401)
Solution:
- Verify environment variable is set
- Check API key format (starts with
sk-ant-) - Ensure key hasn't been rotated
Issue: Context Length Exceeded
Solution:
- Implement conversation pruning
- Summarize older messages
- Use appropriate context window limits
Resources
Skill Version: 1.0.0 Last Updated: October 2025 Compatibility: @anthropic-ai/sdk 0.30.0+ Research Source: Context7 - Anthropic TypeScript SDK (106 code snippets, Trust Score 8.8)