| name | database-management-patterns |
| description | Comprehensive guide for database management patterns covering PostgreSQL and MongoDB including schema design, indexing, transactions, replication, and performance tuning |
| tags | database, postgresql, mongodb, sql, nosql, indexing, transactions, replication, sharding, performance, schema-design |
| tier | tier-1 |
Database Management Patterns
A comprehensive skill for mastering database management across SQL (PostgreSQL) and NoSQL (MongoDB) systems. This skill covers schema design, indexing strategies, transaction management, replication, sharding, and performance optimization for production-grade applications.
When to Use This Skill
Use this skill when:
- Designing database schemas for new applications or refactoring existing ones
- Choosing between SQL and NoSQL databases for your use case
- Optimizing query performance with proper indexing strategies
- Implementing data consistency with transactions and ACID guarantees
- Scaling databases horizontally with sharding and replication
- Managing high-traffic applications requiring distributed databases
- Ensuring data integrity with constraints, triggers, and validation
- Troubleshooting performance issues using explain plans and query analysis
- Building fault-tolerant systems with replication and failover strategies
- Working with complex data relationships (relational) or flexible schemas (document)
Core Concepts
Database Paradigms Comparison
Relational Databases (PostgreSQL)
Strengths:
- ACID Transactions: Strong consistency guarantees
- Complex Queries: JOIN operations, subqueries, CTEs
- Data Integrity: Foreign keys, constraints, triggers
- Normalized Data: Reduced redundancy, consistent updates
- Mature Ecosystem: Rich tooling, extensions, community
Best For:
- Financial systems requiring strict consistency
- Complex relationships and data integrity requirements
- Applications with structured, well-defined schemas
- Systems requiring complex analytical queries
- Multi-step transactions across multiple tables
Document Databases (MongoDB)
Strengths:
- Flexible Schema: Easy schema evolution, polymorphic data
- Horizontal Scalability: Built-in sharding support
- JSON-Native: Natural fit for modern application development
- Embedded Documents: Denormalized data for performance
- Aggregation Framework: Powerful data processing pipeline
Best For:
- Rapidly evolving applications with changing requirements
- Content management systems with varied data structures
- Real-time analytics and event logging
- Mobile and web applications with JSON APIs
- Hierarchical or nested data structures
ACID Properties
Atomicity: All operations in a transaction succeed or fail together Consistency: Transactions bring database from one valid state to another Isolation: Concurrent transactions don't interfere with each other Durability: Committed transactions survive system failures
CAP Theorem
In distributed systems, choose two of three:
- Consistency: All nodes see the same data
- Availability: System remains operational
- Partition Tolerance: System continues despite network failures
PostgreSQL emphasizes CP (Consistency + Partition Tolerance) MongoDB can be configured for CP or AP depending on write/read concerns
PostgreSQL Patterns
Schema Design Fundamentals
Normalization Levels
First Normal Form (1NF)
- Atomic values (no arrays or lists in columns)
- Each row is unique (primary key exists)
- No repeating groups
Second Normal Form (2NF)
- Meets 1NF requirements
- All non-key attributes depend on the entire primary key
Third Normal Form (3NF)
- Meets 2NF requirements
- No transitive dependencies (non-key attributes depend only on primary key)
When to Denormalize:
- Read-heavy workloads where joins are expensive
- Frequently accessed aggregate data
- Historical snapshots that shouldn't change
- Performance-critical queries
Table Design Patterns
Primary Keys:
-- Serial auto-increment (traditional)
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- UUID for distributed systems
CREATE TABLE accounts (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name VARCHAR(255) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Composite primary key
CREATE TABLE order_items (
order_id INTEGER NOT NULL,
product_id INTEGER NOT NULL,
quantity INTEGER NOT NULL,
price NUMERIC(10, 2) NOT NULL,
PRIMARY KEY (order_id, product_id),
FOREIGN KEY (order_id) REFERENCES orders(id),
FOREIGN KEY (product_id) REFERENCES products(id)
);
Foreign Key Constraints:
-- Cascade delete: Remove child records when parent deleted
CREATE TABLE posts (
id SERIAL PRIMARY KEY,
user_id INTEGER NOT NULL,
title VARCHAR(255) NOT NULL,
content TEXT,
FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE CASCADE
);
-- Set null: Preserve child records, nullify reference
CREATE TABLE comments (
id SERIAL PRIMARY KEY,
post_id INTEGER,
user_id INTEGER,
content TEXT NOT NULL,
FOREIGN KEY (post_id) REFERENCES posts(id) ON DELETE SET NULL,
FOREIGN KEY (user_id) REFERENCES users(id) ON DELETE SET NULL
);
-- Restrict: Prevent deletion if child records exist
CREATE TABLE categories (
id SERIAL PRIMARY KEY,
name VARCHAR(255) UNIQUE NOT NULL
);
CREATE TABLE products (
id SERIAL PRIMARY KEY,
category_id INTEGER NOT NULL,
name VARCHAR(255) NOT NULL,
FOREIGN KEY (category_id) REFERENCES categories(id) ON DELETE RESTRICT
);
Advanced Constraints
Check Constraints:
CREATE TABLE products (
id SERIAL PRIMARY KEY,
name VARCHAR(255) NOT NULL,
price NUMERIC(10, 2) NOT NULL CHECK (price > 0),
discount_percent INTEGER CHECK (discount_percent BETWEEN 0 AND 100),
stock_quantity INTEGER NOT NULL CHECK (stock_quantity >= 0)
);
-- Table-level check constraint
CREATE TABLE date_ranges (
id SERIAL PRIMARY KEY,
start_date DATE NOT NULL,
end_date DATE NOT NULL,
CHECK (end_date > start_date)
);
Unique Constraints:
-- Single column unique
CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) UNIQUE NOT NULL,
username VARCHAR(50) UNIQUE NOT NULL
);
-- Composite unique constraint
CREATE TABLE user_permissions (
user_id INTEGER NOT NULL,
permission_id INTEGER NOT NULL,
granted_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
UNIQUE (user_id, permission_id),
FOREIGN KEY (user_id) REFERENCES users(id),
FOREIGN KEY (permission_id) REFERENCES permissions(id)
);
-- Partial unique index (unique where condition met)
CREATE UNIQUE INDEX unique_active_email
ON users (email)
WHERE active = true;
Triggers and Functions
Audit Trail Pattern:
-- Audit table
CREATE TABLE audit_log (
id SERIAL PRIMARY KEY,
table_name VARCHAR(255) NOT NULL,
record_id INTEGER NOT NULL,
action VARCHAR(10) NOT NULL,
old_data JSONB,
new_data JSONB,
changed_by VARCHAR(255),
changed_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Trigger function
CREATE OR REPLACE FUNCTION audit_trigger_function()
RETURNS TRIGGER AS $$
BEGIN
IF TG_OP = 'INSERT' THEN
INSERT INTO audit_log (table_name, record_id, action, new_data, changed_by)
VALUES (TG_TABLE_NAME, NEW.id, 'INSERT', row_to_json(NEW), current_user);
RETURN NEW;
ELSIF TG_OP = 'UPDATE' THEN
INSERT INTO audit_log (table_name, record_id, action, old_data, new_data, changed_by)
VALUES (TG_TABLE_NAME, NEW.id, 'UPDATE', row_to_json(OLD), row_to_json(NEW), current_user);
RETURN NEW;
ELSIF TG_OP = 'DELETE' THEN
INSERT INTO audit_log (table_name, record_id, action, old_data, changed_by)
VALUES (TG_TABLE_NAME, OLD.id, 'DELETE', row_to_json(OLD), current_user);
RETURN OLD;
END IF;
END;
$$ LANGUAGE plpgsql;
-- Attach trigger to table
CREATE TRIGGER users_audit_trigger
AFTER INSERT OR UPDATE OR DELETE ON users
FOR EACH ROW EXECUTE FUNCTION audit_trigger_function();
Timestamp Update Pattern:
CREATE OR REPLACE FUNCTION update_modified_timestamp()
RETURNS TRIGGER AS $$
BEGIN
NEW.updated_at = CURRENT_TIMESTAMP;
RETURN NEW;
END;
$$ LANGUAGE plpgsql;
CREATE TABLE posts (
id SERIAL PRIMARY KEY,
title VARCHAR(255) NOT NULL,
content TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE TRIGGER posts_update_timestamp
BEFORE UPDATE ON posts
FOR EACH ROW EXECUTE FUNCTION update_modified_timestamp();
Views and Materialized Views
Standard Views:
-- Virtual table - computed on each query
CREATE VIEW active_users_with_posts AS
SELECT
u.id,
u.username,
u.email,
COUNT(p.id) as post_count,
MAX(p.created_at) as last_post_date
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
WHERE u.active = true
GROUP BY u.id, u.username, u.email;
-- Use view like a table
SELECT * FROM active_users_with_posts WHERE post_count > 10;
Materialized Views:
-- Physical table - stores computed results
CREATE MATERIALIZED VIEW user_statistics AS
SELECT
u.id,
u.username,
COUNT(DISTINCT p.id) as total_posts,
COUNT(DISTINCT c.id) as total_comments,
AVG(p.views) as avg_post_views,
MAX(p.created_at) as last_activity
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
LEFT JOIN comments c ON u.id = c.user_id
GROUP BY u.id, u.username;
-- Create index on materialized view
CREATE INDEX idx_user_stats_posts ON user_statistics(total_posts);
-- Refresh materialized view (update data)
REFRESH MATERIALIZED VIEW user_statistics;
-- Concurrent refresh (allows reads during refresh)
REFRESH MATERIALIZED VIEW CONCURRENTLY user_statistics;
MongoDB Patterns
Document Modeling Strategies
Embedding vs Referencing
Embedding Pattern (Denormalization):
// One-to-few: Embed when relationship is contained
// Example: Blog post with comments
{
_id: ObjectId("..."),
title: "Database Design Patterns",
author: "John Doe",
content: "...",
published_at: ISODate("2025-01-15"),
comments: [
{
_id: ObjectId("..."),
author: "Jane Smith",
text: "Great article!",
created_at: ISODate("2025-01-16")
},
{
_id: ObjectId("..."),
author: "Bob Johnson",
text: "Very helpful, thanks!",
created_at: ISODate("2025-01-17")
}
],
tags: ["database", "design", "patterns"],
stats: {
views: 1523,
likes: 89,
shares: 23
}
}
// Benefits:
// - Single query to retrieve post with comments
// - Better read performance
// - Atomic updates to entire document
//
// Drawbacks:
// - Document size limits (16MB in MongoDB)
// - Difficult to query comments independently
// - May duplicate data if comments need to appear elsewhere
Referencing Pattern (Normalization):
// One-to-many or many-to-many: Reference when relationship is unbounded
// Example: User with many posts
// Users collection
{
_id: ObjectId("507f1f77bcf86cd799439011"),
username: "john_doe",
email: "john@example.com",
profile: {
bio: "Software engineer",
avatar_url: "https://...",
location: "San Francisco"
},
created_at: ISODate("2024-01-01")
}
// Posts collection (references user)
{
_id: ObjectId("507f191e810c19729de860ea"),
user_id: ObjectId("507f1f77bcf86cd799439011"),
title: "My First Post",
content: "...",
published_at: ISODate("2025-01-15"),
comment_ids: [
ObjectId("..."),
ObjectId("...")
]
}
// Benefits:
// - No duplication of user data
// - Flexible: users can have unlimited posts
// - Easy to update user information once
//
// Drawbacks:
// - Requires multiple queries or $lookup
// - Slower read performance for joined data
Hybrid Approach (Selective Denormalization):
// Store frequently accessed fields from referenced document
{
_id: ObjectId("..."),
title: "Database Patterns",
content: "...",
author: {
// Embedded: frequently accessed, rarely changes
id: ObjectId("507f1f77bcf86cd799439011"),
username: "john_doe",
avatar_url: "https://..."
},
// Reference: full user data available if needed
author_id: ObjectId("507f1f77bcf86cd799439011"),
published_at: ISODate("2025-01-15")
}
// Benefits:
// - Fast reads with embedded frequently-used data
// - Can still get full user data when needed
// - Balance between performance and flexibility
//
// Tradeoffs:
// - Need to update embedded data when user changes username/avatar
// - Slightly larger documents
Schema Design Patterns
Bucket Pattern (Time-Series Data):
// Instead of one document per measurement:
// BAD: Millions of tiny documents
{
sensor_id: "sensor_001",
timestamp: ISODate("2025-01-15T10:00:00Z"),
temperature: 72.5,
humidity: 45
}
// GOOD: Bucket documents with arrays of measurements
{
sensor_id: "sensor_001",
date: ISODate("2025-01-15"),
hour: 10,
measurements: [
{ minute: 0, temperature: 72.5, humidity: 45 },
{ minute: 1, temperature: 72.6, humidity: 45 },
{ minute: 2, temperature: 72.4, humidity: 46 },
// ... up to 60 measurements per hour
],
summary: {
count: 60,
avg_temperature: 72.5,
min_temperature: 71.8,
max_temperature: 73.2
}
}
// Benefits:
// - Reduced document count (60x fewer documents)
// - Better index efficiency
// - Pre-computed summaries
// - Easier to query by time ranges
Computed Pattern (Pre-Aggregated Data):
// Store computed values to avoid expensive aggregations
{
_id: ObjectId("..."),
product_id: "PROD-123",
month: "2025-01",
total_sales: 15420.50,
units_sold: 234,
unique_customers: 187,
avg_order_value: 65.90,
top_customers: [
{ customer_id: "CUST-456", revenue: 890.50 },
{ customer_id: "CUST-789", revenue: 675.25 }
],
computed_at: ISODate("2025-02-01T00:00:00Z")
}
// Update pattern: Scheduled job or trigger updates computed values
Polymorphic Pattern (Varied Schemas):
// Handle different product types in single collection
{
_id: ObjectId("..."),
type: "book",
name: "Database Design",
price: 49.99,
// Book-specific fields
isbn: "978-0-123456-78-9",
author: "John Smith",
pages: 456,
publisher: "Tech Books Inc"
}
{
_id: ObjectId("..."),
type: "electronics",
name: "Wireless Mouse",
price: 29.99,
// Electronics-specific fields
brand: "TechBrand",
warranty_months: 24,
specifications: {
battery_life: "6 months",
connectivity: "Bluetooth 5.0"
}
}
// Query by type
db.products.find({ type: "book", author: "John Smith" })
db.products.find({ type: "electronics", "specifications.connectivity": /Bluetooth/ })
Aggregation Framework
Basic Aggregation Pipeline:
// Group by author and count posts
db.posts.aggregate([
{
$match: { published: true } // Filter stage
},
{
$group: {
_id: "$author_id",
total_posts: { $sum: 1 },
total_views: { $sum: "$views" },
avg_views: { $avg: "$views" },
latest_post: { $max: "$published_at" }
}
},
{
$sort: { total_posts: -1 } // Sort by post count
},
{
$limit: 10 // Top 10 authors
}
])
Advanced Pipeline with Lookup (Join):
// Join posts with user data
db.posts.aggregate([
{
$match: {
published_at: { $gte: ISODate("2025-01-01") }
}
},
{
$lookup: {
from: "users",
localField: "author_id",
foreignField: "_id",
as: "author"
}
},
{
$unwind: "$author" // Flatten author array
},
{
$project: {
title: 1,
content: 1,
views: 1,
"author.username": 1,
"author.email": 1,
days_since_publish: {
$divide: [
{ $subtract: [new Date(), "$published_at"] },
1000 * 60 * 60 * 24
]
}
}
},
{
$sort: { views: -1 }
}
])
Aggregation with Grouping and Reshaping:
// Complex aggregation: Sales analysis
db.orders.aggregate([
{
$match: {
status: "completed",
created_at: {
$gte: ISODate("2025-01-01"),
$lt: ISODate("2025-02-01")
}
}
},
{
$unwind: "$items" // Flatten order items
},
{
$group: {
_id: {
product_id: "$items.product_id",
customer_region: "$customer.region"
},
total_quantity: { $sum: "$items.quantity" },
total_revenue: { $sum: "$items.total_price" },
order_count: { $sum: 1 },
avg_order_value: { $avg: "$items.total_price" }
}
},
{
$group: {
_id: "$_id.product_id",
regions: {
$push: {
region: "$_id.customer_region",
quantity: "$total_quantity",
revenue: "$total_revenue"
}
},
total_quantity: { $sum: "$total_quantity" },
total_revenue: { $sum: "$total_revenue" }
}
},
{
$sort: { total_revenue: -1 }
}
])
Indexing Strategies
PostgreSQL Indexes
B-tree Indexes (Default):
-- Single column index
CREATE INDEX idx_users_email ON users(email);
-- Composite index (order matters!)
CREATE INDEX idx_posts_author_published
ON posts(author_id, published_at);
-- Query can use index:
-- SELECT * FROM posts WHERE author_id = 123 ORDER BY published_at;
-- SELECT * FROM posts WHERE author_id = 123 AND published_at > '2025-01-01';
-- Query CANNOT fully use index:
-- SELECT * FROM posts WHERE published_at > '2025-01-01'; (only uses first column)
Partial Indexes:
-- Index only active users
CREATE INDEX idx_active_users
ON users(username)
WHERE active = true;
-- Index only recent orders
CREATE INDEX idx_recent_orders
ON orders(created_at, status)
WHERE created_at > '2024-01-01';
-- Benefits: Smaller index size, faster queries on filtered data
Expression Indexes:
-- Index on lowercase email for case-insensitive search
CREATE INDEX idx_users_email_lower
ON users(LOWER(email));
-- Query that uses this index:
SELECT * FROM users WHERE LOWER(email) = 'user@example.com';
-- Index on JSONB field extraction
CREATE INDEX idx_metadata_tags
ON products((metadata->>'category'));
Full-Text Search Indexes:
-- Add tsvector column for full-text search
ALTER TABLE articles
ADD COLUMN tsv_content tsvector;
-- Populate tsvector column
UPDATE articles
SET tsv_content = to_tsvector('english', title || ' ' || content);
-- Create GIN index for full-text search
CREATE INDEX idx_articles_tsv ON articles USING GIN(tsv_content);
-- Full-text search query
SELECT title, ts_rank(tsv_content, query) as rank
FROM articles, to_tsquery('english', 'database & design') query
WHERE tsv_content @@ query
ORDER BY rank DESC;
-- Trigger to auto-update tsvector
CREATE TRIGGER articles_tsv_update
BEFORE INSERT OR UPDATE ON articles
FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv_content, 'pg_catalog.english', title, content);
JSONB Indexes:
-- GIN index for JSONB containment queries
CREATE INDEX idx_products_metadata
ON products USING GIN(metadata);
-- Queries that use this index:
SELECT * FROM products WHERE metadata @> '{"color": "blue"}';
SELECT * FROM products WHERE metadata ? 'size';
-- Index on specific JSONB path
CREATE INDEX idx_products_category
ON products((metadata->>'category'));
Index Monitoring:
-- Find unused indexes
SELECT
schemaname,
tablename,
indexname,
idx_scan,
idx_tup_read,
idx_tup_fetch,
pg_size_pretty(pg_relation_size(indexrelid)) as index_size
FROM pg_stat_user_indexes
WHERE idx_scan = 0
ORDER BY pg_relation_size(indexrelid) DESC;
-- Check index usage
SELECT
relname as table_name,
indexrelname as index_name,
idx_scan as times_used,
idx_tup_read as tuples_read,
idx_tup_fetch as tuples_fetched
FROM pg_stat_user_indexes
ORDER BY idx_scan ASC;
MongoDB Indexes
Single Field Indexes:
// Create index on single field
db.users.createIndex({ email: 1 }) // 1 = ascending, -1 = descending
// Unique index
db.users.createIndex({ username: 1 }, { unique: true })
// Sparse index (only index documents with the field)
db.users.createIndex({ phone_number: 1 }, { sparse: true })
Compound Indexes:
// Index on multiple fields (order matters!)
db.posts.createIndex({ author_id: 1, published_at: -1 })
// Efficient queries:
// - { author_id: "123" }
// - { author_id: "123", published_at: { $gte: ... } }
// - { author_id: "123" } with sort by published_at
// Inefficient:
// - { published_at: { $gte: ... } } alone (doesn't use index efficiently)
// ESR Rule: Equality, Sort, Range
// Best compound index order:
// 1. Equality filters first
// 2. Sort fields second
// 3. Range filters last
db.orders.createIndex({
status: 1, // Equality
created_at: -1, // Sort
total_amount: 1 // Range
})
Multikey Indexes (Array Fields):
// Index on array field
db.posts.createIndex({ tags: 1 })
// Document with array
{
_id: ObjectId("..."),
title: "Database Design",
tags: ["database", "mongodb", "schema"]
}
// Query that uses multikey index
db.posts.find({ tags: "mongodb" })
db.posts.find({ tags: { $in: ["database", "nosql"] } })
// Compound multikey index (max one array field)
db.posts.createIndex({ tags: 1, published_at: -1 }) // Valid
// db.posts.createIndex({ tags: 1, categories: 1 }) // Invalid if both are arrays
Text Indexes:
// Create text index for full-text search
db.articles.createIndex({
title: "text",
content: "text"
})
// Text search query
db.articles.find({
$text: { $search: "database design patterns" }
})
// Search with relevance score
db.articles.find(
{ $text: { $search: "database design" } },
{ score: { $meta: "textScore" } }
).sort({ score: { $meta: "textScore" } })
// Weighted text index (prioritize title over content)
db.articles.createIndex(
{ title: "text", content: "text" },
{ weights: { title: 10, content: 5 } }
)
Geospatial Indexes:
// 2dsphere index for geographic queries
db.locations.createIndex({ coordinates: "2dsphere" })
// Document format
{
name: "Coffee Shop",
coordinates: {
type: "Point",
coordinates: [-122.4194, 37.7749] // [longitude, latitude]
}
}
// Find locations near a point
db.locations.find({
coordinates: {
$near: {
$geometry: {
type: "Point",
coordinates: [-122.4194, 37.7749]
},
$maxDistance: 1000 // meters
}
}
})
Index Properties:
// TTL Index (auto-delete documents after time)
db.sessions.createIndex(
{ created_at: 1 },
{ expireAfterSeconds: 3600 } // 1 hour
)
// Partial Index (index subset of documents)
db.orders.createIndex(
{ status: 1, created_at: -1 },
{ partialFilterExpression: { status: { $eq: "pending" } } }
)
// Case-insensitive index
db.users.createIndex(
{ email: 1 },
{ collation: { locale: "en", strength: 2 } }
)
// Background index creation (doesn't block operations)
db.large_collection.createIndex(
{ field: 1 },
{ background: true }
)
Index Analysis:
// Explain query execution
db.posts.find({ author_id: "123" }).explain("executionStats")
// Check index usage
db.posts.aggregate([
{ $indexStats: {} }
])
// List all indexes on collection
db.posts.getIndexes()
// Drop unused index
db.posts.dropIndex("index_name")
Transactions
PostgreSQL Transaction Management
Basic Transactions:
-- Explicit transaction
BEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 1;
UPDATE accounts SET balance = balance + 100 WHERE id = 2;
COMMIT;
-- or ROLLBACK; to cancel changes
Savepoints (Partial Rollback):
BEGIN;
UPDATE inventory SET quantity = quantity - 10 WHERE product_id = 'PROD-123';
SAVEPOINT before_audit;
INSERT INTO audit_log (action, details) VALUES ('inventory_update', '...');
-- Oops, error in audit log
ROLLBACK TO SAVEPOINT before_audit;
-- Inventory update preserved, audit insert rolled back
-- Fix and retry
INSERT INTO audit_log (action, details) VALUES ('inventory_update', 'correct details');
COMMIT;
Isolation Levels:
-- Read Uncommitted (not supported in PostgreSQL, defaults to Read Committed)
-- Read Committed (default) - sees only committed data
SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
-- Repeatable Read - sees snapshot at transaction start
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT * FROM accounts WHERE id = 1; -- Returns balance 1000
-- Another transaction updates balance to 1500 and commits
SELECT * FROM accounts WHERE id = 1; -- Still returns 1000 (repeatable read)
COMMIT;
-- Serializable - strictest isolation, prevents all anomalies
BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
-- If concurrent transactions would violate serializability, one aborts
COMMIT;
Advisory Locks (Application-Level Locking):
-- Exclusive lock on arbitrary number
SELECT pg_advisory_lock(12345);
-- ... perform critical operation ...
SELECT pg_advisory_unlock(12345);
-- Try lock (non-blocking)
SELECT pg_try_advisory_lock(12345); -- Returns true if acquired, false otherwise
-- Session-level advisory lock (auto-released on disconnect)
SELECT pg_advisory_lock(user_id);
Row-Level Locking:
-- SELECT FOR UPDATE - lock rows for update
BEGIN;
SELECT * FROM products
WHERE id = 123
FOR UPDATE; -- Locks this row
UPDATE products SET quantity = quantity - 1 WHERE id = 123;
COMMIT;
-- SELECT FOR SHARE - shared lock (allows other reads, blocks writes)
SELECT * FROM products WHERE id = 123 FOR SHARE;
-- SKIP LOCKED - skip locked rows instead of waiting
SELECT * FROM queue
WHERE processed = false
ORDER BY priority
LIMIT 10
FOR UPDATE SKIP LOCKED;
MongoDB Transactions
Multi-Document Transactions:
// Transactions require replica set or sharded cluster
const session = db.getMongo().startSession()
session.startTransaction()
try {
const accountsCol = session.getDatabase("mydb").accounts
// Debit account
accountsCol.updateOne(
{ _id: "account1" },
{ $inc: { balance: -100 } },
{ session }
)
// Credit account
accountsCol.updateOne(
{ _id: "account2" },
{ $inc: { balance: 100 } },
{ session }
)
// Commit transaction
session.commitTransaction()
} catch (error) {
// Abort on error
session.abortTransaction()
throw error
} finally {
session.endSession()
}
Read and Write Concerns:
// Write Concern: Acknowledgment level
db.orders.insertOne(
{ customer_id: "123", items: [...] },
{
writeConcern: {
w: "majority", // Wait for majority of replica set
j: true, // Wait for journal write
wtimeout: 5000 // Timeout after 5 seconds
}
}
)
// Read Concern: Data consistency level
db.orders.find(
{ status: "pending" }
).readConcern("majority") // Only return data acknowledged by majority
// Read Preference: Which replica to read from
db.orders.find({ ... }).readPref("secondary") // Read from secondary replica
Atomic Operations (Single Document):
// Single document updates are atomic by default
db.counters.updateOne(
{ _id: "page_views" },
{
$inc: { count: 1 },
$set: { last_updated: new Date() }
}
)
// Atomic array operations
db.posts.updateOne(
{ _id: ObjectId("...") },
{
$push: {
comments: {
$each: [{ author: "John", text: "Great!" }],
$position: 0 // Insert at beginning
}
}
}
)
// Find and modify (atomic read-modify-write)
db.queue.findOneAndUpdate(
{ status: "pending" },
{ $set: { status: "processing", processor_id: "worker-1" } },
{
sort: { priority: -1 },
returnDocument: "after" // Return updated document
}
)
Replication
PostgreSQL Replication
Streaming Replication (Primary-Standby):
-- Primary server configuration (postgresql.conf)
wal_level = replica
max_wal_senders = 10
wal_keep_size = '1GB'
hot_standby = on
-- Create replication user
CREATE ROLE replicator WITH REPLICATION LOGIN PASSWORD 'secure_password';
-- pg_hba.conf on primary
host replication replicator standby_ip/32 md5
-- Standby server (recovery.conf or postgresql.auto.conf)
primary_conninfo = 'host=primary_ip port=5432 user=replicator password=...'
restore_command = 'cp /var/lib/postgresql/archive/%f %p'
Logical Replication (Selective Replication):
-- On publisher (source)
CREATE PUBLICATION my_publication FOR TABLE users, posts;
-- or FOR ALL TABLES;
-- On subscriber (destination)
CREATE SUBSCRIPTION my_subscription
CONNECTION 'host=publisher_ip dbname=mydb user=replicator password=...'
PUBLICATION my_publication;
-- Monitor replication
SELECT * FROM pg_stat_replication;
SELECT * FROM pg_replication_slots;
Failover and Promotion:
-- Promote standby to primary
pg_ctl promote -D /var/lib/postgresql/data
-- Check replication lag
SELECT
client_addr,
state,
sent_lsn,
write_lsn,
flush_lsn,
replay_lsn,
sync_state,
pg_wal_lsn_diff(sent_lsn, replay_lsn) AS lag_bytes
FROM pg_stat_replication;
MongoDB Replication
Replica Set Configuration:
// Initialize replica set
rs.initiate({
_id: "myReplicaSet",
members: [
{ _id: 0, host: "mongodb1.example.com:27017", priority: 2 },
{ _id: 1, host: "mongodb2.example.com:27017", priority: 1 },
{ _id: 2, host: "mongodb3.example.com:27017", priority: 1 }
]
})
// Add member to existing replica set
rs.add("mongodb4.example.com:27017")
// Remove member
rs.remove("mongodb4.example.com:27017")
// Check replica set status
rs.status()
// Check replication lag
rs.printSecondaryReplicationInfo()
Replica Set Roles:
// Priority 0 member (cannot become primary)
rs.add({
host: "analytics.example.com:27017",
priority: 0,
hidden: true // Hidden from application drivers
})
// Arbiter (voting only, no data)
rs.addArb("arbiter.example.com:27017")
// Delayed member (disaster recovery)
rs.add({
host: "delayed.example.com:27017",
priority: 0,
hidden: true,
slaveDelay: 3600 // 1 hour behind
})
Read Preference Configuration:
// Application connection with read preference
const client = new MongoClient(uri, {
readPreference: "secondaryPreferred", // Try secondary, fallback to primary
readConcernLevel: "majority"
})
// Read Preference Modes:
// - primary (default): Read from primary only
// - primaryPreferred: Primary if available, else secondary
// - secondary: Read from secondary only
// - secondaryPreferred: Secondary if available, else primary
// - nearest: Read from nearest member (lowest latency)
Sharding
MongoDB Sharding Architecture
Shard Key Selection:
// Good shard key characteristics:
// 1. High cardinality (many distinct values)
// 2. Even distribution
// 3. Query isolation (queries target specific shards)
// Example: User-based application
sh.shardCollection("mydb.users", { user_id: "hashed" })
// Hashed shard key: Even distribution, random data location
sh.shardCollection("mydb.events", { event_id: "hashed" })
// Range-based shard key: Ordered data, good for range queries
sh.shardCollection("mydb.logs", { timestamp: 1, server_id: 1 })
// Compound shard key
sh.shardCollection("mydb.orders", {
customer_region: 1, // Coarse grouping
order_date: 1 // Fine grouping
})
Sharding Setup:
// 1. Start config servers (replica set)
mongod --configsvr --replSet configRS --port 27019
// 2. Initialize config server replica set
rs.initiate({
_id: "configRS",
configsvr: true,
members: [
{ _id: 0, host: "cfg1.example.com:27019" },
{ _id: 1, host: "cfg2.example.com:27019" },
{ _id: 2, host: "cfg3.example.com:27019" }
]
})
// 3. Start shard servers (each is a replica set)
mongod --shardsvr --replSet shard1RS --port 27018
// 4. Start mongos (query router)
mongos --configdb configRS/cfg1.example.com:27019,cfg2.example.com:27019
// 5. Add shards to cluster
sh.addShard("shard1RS/shard1-a.example.com:27018")
sh.addShard("shard2RS/shard2-a.example.com:27018")
// 6. Enable sharding on database
sh.enableSharding("mydb")
// 7. Shard collections
sh.shardCollection("mydb.users", { user_id: "hashed" })
Query Targeting:
// Targeted query (includes shard key)
db.users.find({ user_id: "12345" })
// Routes to single shard
// Scatter-gather query (no shard key)
db.users.find({ email: "user@example.com" })
// Queries all shards, merges results
// Check query targeting
db.users.find({ user_id: "12345" }).explain()
// Look for "SINGLE_SHARD" vs "ALL_SHARDS"
Zone Sharding (Geographic Distribution):
// Define zones for geographic sharding
sh.addShardToZone("shard1", "US")
sh.addShardToZone("shard2", "EU")
// Define zone ranges
sh.updateZoneKeyRange(
"mydb.users",
{ region: "US", user_id: MinKey },
{ region: "US", user_id: MaxKey },
"US"
)
sh.updateZoneKeyRange(
"mydb.users",
{ region: "EU", user_id: MinKey },
{ region: "EU", user_id: MaxKey },
"EU"
)
// Shard collection with zone-aware key
sh.shardCollection("mydb.users", { region: 1, user_id: 1 })
PostgreSQL Horizontal Partitioning
Declarative Partitioning:
-- Range partitioning
CREATE TABLE logs (
id BIGSERIAL,
log_time TIMESTAMP NOT NULL,
message TEXT,
level VARCHAR(10)
) PARTITION BY RANGE (log_time);
-- Create partitions
CREATE TABLE logs_2025_01 PARTITION OF logs
FOR VALUES FROM ('2025-01-01') TO ('2025-02-01');
CREATE TABLE logs_2025_02 PARTITION OF logs
FOR VALUES FROM ('2025-02-01') TO ('2025-03-01');
-- List partitioning
CREATE TABLE customers (
id SERIAL,
name VARCHAR(255),
region VARCHAR(50)
) PARTITION BY LIST (region);
CREATE TABLE customers_us PARTITION OF customers
FOR VALUES IN ('US', 'CA', 'MX');
CREATE TABLE customers_eu PARTITION OF customers
FOR VALUES IN ('UK', 'DE', 'FR', 'IT');
-- Hash partitioning
CREATE TABLE events (
id BIGSERIAL,
event_type VARCHAR(50),
data JSONB
) PARTITION BY HASH (id);
CREATE TABLE events_0 PARTITION OF events
FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE events_1 PARTITION OF events
FOR VALUES WITH (MODULUS 4, REMAINDER 1);
-- ... events_2 and events_3
Partition Pruning (Query Optimization):
-- Query automatically uses only relevant partition
SELECT * FROM logs
WHERE log_time BETWEEN '2025-01-15' AND '2025-01-20';
-- Only scans logs_2025_01 partition
-- Check query plan
EXPLAIN SELECT * FROM logs WHERE log_time > '2025-01-01';
-- Shows which partitions are scanned
Performance Tuning
Query Optimization Techniques
PostgreSQL Query Analysis:
-- Basic explain
EXPLAIN SELECT * FROM users WHERE email = 'test@example.com';
-- Analyze with actual execution statistics
EXPLAIN ANALYZE
SELECT u.username, COUNT(p.id) as post_count
FROM users u
LEFT JOIN posts p ON u.id = p.user_id
WHERE u.active = true
GROUP BY u.id, u.username
ORDER BY post_count DESC
LIMIT 10;
-- Identify slow queries
SELECT
query,
calls,
total_exec_time,
mean_exec_time,
max_exec_time
FROM pg_stat_statements
ORDER BY total_exec_time DESC
LIMIT 20;
-- Table statistics
ANALYZE users; -- Update query planner statistics
-- Vacuum and analyze
VACUUM ANALYZE posts; -- Reclaim space and update stats
Common Query Patterns:
-- Avoid SELECT * (retrieve only needed columns)
-- BAD
SELECT * FROM users WHERE id = 123;
-- GOOD
SELECT id, username, email FROM users WHERE id = 123;
-- Use EXISTS instead of IN for large subqueries
-- BAD
SELECT * FROM posts WHERE author_id IN (
SELECT id FROM users WHERE active = true
);
-- GOOD
SELECT * FROM posts p WHERE EXISTS (
SELECT 1 FROM users u
WHERE u.id = p.author_id AND u.active = true
);
-- Use JOINs instead of multiple queries
-- BAD (N+1 query problem)
-- SELECT * FROM posts;
-- Then for each post: SELECT * FROM users WHERE id = post.author_id;
-- GOOD
SELECT p.*, u.username, u.email
FROM posts p
JOIN users u ON p.author_id = u.id;
-- Window functions instead of self-joins
-- Calculate running total
SELECT
order_date,
amount,
SUM(amount) OVER (ORDER BY order_date) as running_total
FROM orders;
-- Rank within groups
SELECT
category,
product_name,
sales,
RANK() OVER (PARTITION BY category ORDER BY sales DESC) as rank_in_category
FROM products;
MongoDB Query Optimization:
// Use projection to limit returned fields
// BAD
db.users.find({ active: true })
// GOOD
db.users.find(
{ active: true },
{ username: 1, email: 1, _id: 0 }
)
// Use covered queries (index covers all fields)
db.users.createIndex({ username: 1, email: 1 })
db.users.find(
{ username: "john_doe" },
{ username: 1, email: 1, _id: 0 }
) // Entire query served from index
// Avoid negation operators
// BAD (cannot use index efficiently)
db.products.find({ status: { $ne: "discontinued" } })
// GOOD
db.products.find({ status: { $in: ["active", "pending", "sold"] } })
// Use $lookup sparingly (expensive operation)
// Consider embedding data instead if appropriate
// Aggregation optimization: Filter early
// BAD
db.orders.aggregate([
{ $lookup: { ... } }, // Expensive join
{ $match: { status: "completed" } } // Filter after join
])
// GOOD
db.orders.aggregate([
{ $match: { status: "completed" } }, // Filter first
{ $lookup: { ... } } // Join fewer documents
])
Connection Pooling
PostgreSQL Connection Pooling:
// Using node-postgres (pg) with pool
const { Pool } = require('pg')
const pool = new Pool({
host: 'localhost',
port: 5432,
database: 'mydb',
user: 'dbuser',
password: 'secret',
max: 20, // Maximum pool size
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 2000
})
// Execute query
const result = await pool.query('SELECT * FROM users WHERE id = $1', [123])
// Use PgBouncer for server-side pooling
// pgbouncer.ini
// [databases]
// mydb = host=localhost port=5432 dbname=mydb
//
// [pgbouncer]
// pool_mode = transaction
// max_client_conn = 1000
// default_pool_size = 25
MongoDB Connection Pooling:
// MongoClient automatically manages connection pool
const { MongoClient } = require('mongodb')
const client = new MongoClient(uri, {
maxPoolSize: 50, // Max connections
minPoolSize: 10, // Min connections
maxIdleTimeMS: 30000, // Close idle connections
waitQueueTimeoutMS: 5000 // Wait for available connection
})
await client.connect()
const db = client.db('mydb')
// Connection automatically returned to pool after use
Best Practices
PostgreSQL Best Practices
Schema Design
- Normalize for data integrity, denormalize for performance
- Use appropriate data types (avoid TEXT for short strings)
- Define NOT NULL constraints where appropriate
- Use SERIAL or UUID for primary keys consistently
Indexing
- Index foreign keys for JOIN performance
- Create indexes on frequently filtered/sorted columns
- Use partial indexes for selective queries
- Monitor and remove unused indexes
- Keep composite index column count reasonable (typically ≤ 3-4)
Query Performance
- Use EXPLAIN ANALYZE to understand query plans
- Avoid SELECT * in application code
- Use prepared statements to prevent SQL injection
- Limit result sets with LIMIT
- Use connection pooling
Maintenance
- Run VACUUM regularly (or enable autovacuum)
- Update statistics with ANALYZE
- Monitor slow query log
- Set appropriate autovacuum thresholds
- Regular backup with pg_dump or WAL archiving
Security
- Use SSL/TLS for connections
- Implement row-level security for multi-tenant apps
- Grant minimum necessary privileges
- Use parameterized queries
- Regular security updates
MongoDB Best Practices
Schema Design
- Embed related data that is accessed together
- Reference data that is large or rarely accessed
- Use polymorphic pattern for varied schemas
- Limit document size to reasonable bounds (< 1-2 MB typically)
- Design for your query patterns
Indexing
- Index on fields used in queries and sorts
- Use compound indexes with ESR rule (Equality, Sort, Range)
- Create text indexes for full-text search
- Monitor index usage with $indexStats
- Avoid too many indexes (write performance impact)
Query Performance
- Use projection to limit returned fields
- Create covered queries when possible
- Filter early in aggregation pipelines
- Avoid $lookup when embedding is appropriate
- Use explain() to verify index usage
Scalability
- Choose appropriate shard key (high cardinality, even distribution)
- Use replica sets for high availability
- Configure appropriate read/write concerns
- Monitor chunk distribution in sharded clusters
- Use zones for geographic distribution
Operations
- Enable authentication and authorization
- Use TLS for client connections
- Regular backups (mongodump or filesystem snapshots)
- Monitor with MongoDB Atlas, Ops Manager, or custom tools
- Keep MongoDB version updated
Data Modeling Decision Framework
Choose PostgreSQL when:
- Strong ACID guarantees required (financial transactions)
- Complex relationships with many JOINs
- Data structure is well-defined and stable
- Need for advanced SQL features (window functions, CTEs, stored procedures)
- Compliance requirements demand strict consistency
Choose MongoDB when:
- Schema flexibility needed (rapid development, evolving requirements)
- Horizontal scalability is priority (sharding required)
- Document-oriented data (JSON/BSON native format)
- Hierarchical or nested data structures
- High write throughput with eventual consistency acceptable
Hybrid Approach:
- Use both databases for different parts of application
- PostgreSQL for transactional data (orders, payments)
- MongoDB for catalog, logs, user sessions
- Synchronize critical data between systems
Common Patterns and Anti-Patterns
PostgreSQL Anti-Patterns
❌ Storing JSON when relational fits better
-- BAD: Using JSONB for structured, queryable data
CREATE TABLE users (
id SERIAL PRIMARY KEY,
data JSONB -- { name, email, address: { street, city, state } }
);
-- GOOD: Proper normalization
CREATE TABLE users (
id SERIAL PRIMARY KEY,
name VARCHAR(255),
email VARCHAR(255)
);
CREATE TABLE addresses (
id SERIAL PRIMARY KEY,
user_id INTEGER REFERENCES users(id),
street VARCHAR(255),
city VARCHAR(100),
state VARCHAR(50)
);
❌ Over-indexing
-- BAD: Index on every column "just in case"
CREATE INDEX idx1 ON users(username);
CREATE INDEX idx2 ON users(email);
CREATE INDEX idx3 ON users(created_at);
CREATE INDEX idx4 ON users(updated_at);
CREATE INDEX idx5 ON users(active);
-- Result: Slow writes, large database size
-- GOOD: Index based on actual query patterns
CREATE INDEX idx_users_email ON users(email); -- Login queries
CREATE INDEX idx_active_users_created ON users(created_at) WHERE active = true; -- Partial
❌ N+1 Query Problem
-- BAD: Multiple queries in loop
SELECT * FROM posts; -- Returns 100 posts
-- Then for each post:
SELECT * FROM users WHERE id = ?; -- 100 additional queries!
-- GOOD: Single query with JOIN
SELECT p.*, u.username, u.email
FROM posts p
JOIN users u ON p.author_id = u.id;
MongoDB Anti-Patterns
❌ Massive arrays in documents
// BAD: Unbounded array growth
{
_id: ObjectId("..."),
username: "popular_user",
followers: [
ObjectId("follower1"),
ObjectId("follower2"),
// ... 100,000+ follower IDs
// Document exceeds 16MB limit!
]
}
// GOOD: Separate collection with references
// users collection
{ _id: ObjectId("..."), username: "popular_user" }
// followers collection
{ _id: ObjectId("..."), user_id: ObjectId("..."), follower_id: ObjectId("...") }
db.followers.createIndex({ user_id: 1, follower_id: 1 })
❌ Poor shard key selection
// BAD: Monotonically increasing shard key
sh.shardCollection("mydb.events", { _id: 1 })
// All writes go to same shard (highest _id range)
// BAD: Low cardinality shard key
sh.shardCollection("mydb.users", { country: 1 })
// Most users in few countries = uneven distribution
// GOOD: Hashed _id or compound key
sh.shardCollection("mydb.events", { _id: "hashed" }) // Even distribution
sh.shardCollection("mydb.users", { country: 1, user_id: 1 }) // Compound
❌ Ignoring indexes on embedded documents
// Document structure
{
username: "john_doe",
profile: {
email: "john@example.com",
age: 30,
city: "San Francisco"
}
}
// Query on embedded field
db.users.find({ "profile.email": "john@example.com" })
// MISSING: Index on embedded field
db.users.createIndex({ "profile.email": 1 })
Troubleshooting Guide
PostgreSQL Issues
Slow Queries:
-- Enable slow query logging (postgresql.conf)
-- log_min_duration_statement = 1000 # Log queries > 1 second
-- Find slow queries
SELECT
query,
calls,
total_exec_time / calls as avg_time_ms,
rows / calls as avg_rows
FROM pg_stat_statements
WHERE calls > 100
ORDER BY total_exec_time DESC
LIMIT 20;
-- Analyze specific slow query
EXPLAIN (ANALYZE, BUFFERS, VERBOSE)
SELECT ... FROM ... WHERE ...;
High CPU Usage:
-- Check running queries
SELECT
pid,
now() - query_start as duration,
state,
query
FROM pg_stat_activity
WHERE state != 'idle'
ORDER BY duration DESC;
-- Terminate long-running query
SELECT pg_terminate_backend(pid);
Lock Contention:
-- View locks
SELECT
locktype,
relation::regclass,
mode,
granted,
pid
FROM pg_locks
WHERE NOT granted;
-- Find blocking queries
SELECT
blocked_locks.pid AS blocked_pid,
blocking_locks.pid AS blocking_pid,
blocked_activity.query AS blocked_query,
blocking_activity.query AS blocking_query
FROM pg_locks blocked_locks
JOIN pg_stat_activity blocked_activity ON blocked_activity.pid = blocked_locks.pid
JOIN pg_locks blocking_locks ON blocking_locks.locktype = blocked_locks.locktype
JOIN pg_stat_activity blocking_activity ON blocking_activity.pid = blocking_locks.pid
WHERE NOT blocked_locks.granted AND blocking_locks.granted;
MongoDB Issues
Slow Queries:
// Enable profiling
db.setProfilingLevel(1, { slowms: 100 }) // Log queries > 100ms
// View slow queries
db.system.profile.find().sort({ ts: -1 }).limit(10)
// Analyze query performance
db.collection.find({ ... }).explain("executionStats")
// Check: totalDocsExamined vs nReturned (should be close)
// Check: executionTimeMillis
// Check: indexName (should show index usage)
Replication Lag:
// Check lag on secondary
rs.printSecondaryReplicationInfo()
// Check oplog size
db.getReplicationInfo()
// Increase oplog size if needed
db.adminCommand({ replSetResizeOplog: 1, size: 16384 }) // 16GB
Sharding Issues:
// Check chunk distribution
sh.status()
// Check balancer status
sh.getBalancerState()
sh.isBalancerRunning()
// Balance specific collection
sh.enableBalancing("mydb.mycollection")
// Check for jumbo chunks
db.chunks.find({ jumbo: true })
Resources
PostgreSQL Resources
- Official Documentation: https://www.postgresql.org/docs/
- PostgreSQL Wiki: https://wiki.postgresql.org/
- Performance Tuning: https://wiki.postgresql.org/wiki/Performance_Optimization
- Explain Visualizer: https://explain.dalibo.com/
- pg_stat_statements Extension: Essential for query analysis
MongoDB Resources
- Official Documentation: https://docs.mongodb.com/
- MongoDB University: Free courses and certification
- Aggregation Framework: https://docs.mongodb.com/manual/aggregation/
- Sharding Guide: https://docs.mongodb.com/manual/sharding/
- Schema Design Patterns: https://www.mongodb.com/blog/post/building-with-patterns-a-summary
Books
- PostgreSQL: "PostgreSQL: Up and Running" by Regina Obe & Leo Hsu
- MongoDB: "MongoDB: The Definitive Guide" by Shannon Bradshaw, Eoin Brazil, Kristina Chodorow
Skill Version: 1.0.0 Last Updated: January 2025 Skill Category: Database Management, Data Architecture, Performance Optimization Technologies: PostgreSQL 16+, MongoDB 7+