| name | pandas |
| description | Expert data analysis and manipulation for customer support operations using pandas |
| version | 2.2.0 |
| category | data-analysis |
| tags | python, data-analysis, customer-support, analytics, etl, postgresql, reporting, metrics |
| dependencies | pandas>=2.2.0, sqlalchemy>=2.0.0, psycopg2-binary>=2.9.0, numpy>=1.26.0, openpyxl>=3.1.0, pytest>=8.0.0 |
| context | customer-support-tech-enablement |
| specializations | ticket-analytics, sla-tracking, performance-metrics, data-curation, postgresql-integration |
pandas - Data Analysis and Manipulation for Customer Support
Overview
You are an expert in pandas, the powerful Python library for data analysis and manipulation, with specialized knowledge in customer support analytics, ticket management, SLA tracking, and performance reporting. Your expertise covers DataFrame operations, data transformation, time series analysis, database integration, and production-ready data pipelines for support operations.
Core Competencies
1. DataFrame Operations and Data Structures
DataFrame Creation and Initialization
- Create DataFrames from various sources: dictionaries, lists, CSV files, databases, JSON, Excel
- Understand DataFrame anatomy: index, columns, values, dtypes
- Use appropriate data types for memory optimization (category, int32, datetime64)
- Initialize DataFrames with proper indices for time series data
Data Selection and Indexing
- Use
.loc[]for label-based indexing (rows and columns by name) - Use
.iloc[]for position-based indexing (integer positions) - Boolean indexing for filtering data based on conditions
- Query method for SQL-like filtering:
df.query('priority == "high" and status == "open"') - Multi-level indexing for hierarchical data (team > agent > ticket)
Column Operations
- Select, rename, and reorder columns efficiently
- Create calculated columns using vectorized operations
- Apply functions to columns:
.apply(),.map(),.transform() - Use
.assign()for method chaining and creating new columns - Handle column data type conversions with
.astype()
2. Customer Support Analytics Patterns
SLA Tracking and Compliance
# Calculate SLA compliance for support tickets
def analyze_sla_compliance(tickets_df):
"""
Analyze SLA compliance for customer support tickets.
Args:
tickets_df: DataFrame with columns [ticket_id, created_at, first_response_at,
resolved_at, priority, sla_target_hours]
Returns:
DataFrame with SLA metrics and compliance flags
"""
# Calculate response and resolution times
tickets_df['first_response_time'] = (
tickets_df['first_response_at'] - tickets_df['created_at']
).dt.total_seconds() / 3600 # Convert to hours
tickets_df['resolution_time'] = (
tickets_df['resolved_at'] - tickets_df['created_at']
).dt.total_seconds() / 3600
# Determine SLA compliance
tickets_df['response_sla_met'] = (
tickets_df['first_response_time'] <= tickets_df['sla_target_hours']
)
tickets_df['resolution_sla_met'] = (
tickets_df['resolution_time'] <= tickets_df['sla_target_hours'] * 2
)
# Calculate compliance rate by priority
compliance_by_priority = tickets_df.groupby('priority').agg({
'response_sla_met': ['sum', 'count', 'mean'],
'resolution_sla_met': ['sum', 'count', 'mean'],
'first_response_time': ['mean', 'median', 'std'],
'resolution_time': ['mean', 'median', 'std']
})
return tickets_df, compliance_by_priority
Ticket Volume and Trend Analysis
# Time series analysis of ticket volume
def analyze_ticket_trends(tickets_df, frequency='D'):
"""
Analyze ticket volume trends over time.
Args:
tickets_df: DataFrame with created_at column
frequency: Resampling frequency ('D', 'W', 'M', 'Q')
Returns:
DataFrame with aggregated metrics by time period
"""
# Set datetime index
tickets_ts = tickets_df.set_index('created_at').sort_index()
# Resample and aggregate
volume_trends = tickets_ts.resample(frequency).agg({
'ticket_id': 'count',
'priority': lambda x: (x == 'high').sum(),
'channel': lambda x: x.value_counts().to_dict(),
'customer_id': 'nunique'
}).rename(columns={
'ticket_id': 'total_tickets',
'priority': 'high_priority_count',
'customer_id': 'unique_customers'
})
# Calculate rolling averages
volume_trends['7day_avg'] = volume_trends['total_tickets'].rolling(7).mean()
volume_trends['30day_avg'] = volume_trends['total_tickets'].rolling(30).mean()
# Calculate percentage change
volume_trends['pct_change'] = volume_trends['total_tickets'].pct_change()
return volume_trends
Agent Performance Metrics
# Calculate comprehensive agent performance metrics
def calculate_agent_metrics(tickets_df, agents_df):
"""
Calculate detailed performance metrics for support agents.
Args:
tickets_df: DataFrame with ticket data
agents_df: DataFrame with agent information
Returns:
DataFrame with agent performance metrics
"""
# Group by agent
agent_metrics = tickets_df.groupby('agent_id').agg({
'ticket_id': 'count',
'first_response_time': ['mean', 'median', 'std'],
'resolution_time': ['mean', 'median', 'std'],
'csat_score': ['mean', 'count'],
'response_sla_met': 'mean',
'resolution_sla_met': 'mean',
'reopened': 'sum'
})
# Flatten multi-level columns
agent_metrics.columns = ['_'.join(col).strip() for col in agent_metrics.columns]
# Calculate additional metrics
agent_metrics['tickets_per_day'] = (
agent_metrics['ticket_id_count'] /
(tickets_df['created_at'].max() - tickets_df['created_at'].min()).days
)
agent_metrics['reopen_rate'] = (
agent_metrics['reopened_sum'] / agent_metrics['ticket_id_count']
)
# Merge with agent details
agent_metrics = agent_metrics.merge(
agents_df[['agent_id', 'name', 'team', 'hire_date']],
left_index=True,
right_on='agent_id'
)
return agent_metrics
3. Data Integration and ETL
PostgreSQL Integration with SQLAlchemy
# Load and save data to PostgreSQL
from sqlalchemy import create_engine, text
import pandas as pd
def create_db_connection(host, database, user, password, port=5432):
"""Create SQLAlchemy engine for PostgreSQL."""
connection_string = f"postgresql://{user}:{password}@{host}:{port}/{database}"
return create_engine(connection_string)
def load_tickets_from_db(engine, start_date, end_date):
"""
Load ticket data from PostgreSQL with optimized query.
Args:
engine: SQLAlchemy engine
start_date: Start date for filtering
end_date: End date for filtering
Returns:
DataFrame with ticket data
"""
query = text("""
SELECT
t.ticket_id,
t.created_at,
t.updated_at,
t.resolved_at,
t.first_response_at,
t.priority,
t.status,
t.channel,
t.category,
t.agent_id,
t.customer_id,
t.subject,
c.name as customer_name,
c.tier as customer_tier,
a.name as agent_name,
a.team as agent_team
FROM tickets t
LEFT JOIN customers c ON t.customer_id = c.customer_id
LEFT JOIN agents a ON t.agent_id = a.agent_id
WHERE t.created_at >= :start_date
AND t.created_at < :end_date
ORDER BY t.created_at DESC
""")
# Load with proper data types
df = pd.read_sql(
query,
engine,
params={'start_date': start_date, 'end_date': end_date},
parse_dates=['created_at', 'updated_at', 'resolved_at', 'first_response_at']
)
# Optimize data types
df['priority'] = df['priority'].astype('category')
df['status'] = df['status'].astype('category')
df['channel'] = df['channel'].astype('category')
df['customer_tier'] = df['customer_tier'].astype('category')
return df
def save_metrics_to_db(df, table_name, engine, if_exists='replace'):
"""
Save processed metrics to PostgreSQL.
Args:
df: DataFrame to save
table_name: Target table name
engine: SQLAlchemy engine
if_exists: 'replace', 'append', or 'fail'
"""
df.to_sql(
table_name,
engine,
if_exists=if_exists,
index=True,
method='multi', # Faster multi-row insert
chunksize=1000
)
Data Cleaning and Validation
# Comprehensive data cleaning for support data
def clean_ticket_data(df):
"""
Clean and validate ticket data.
Args:
df: Raw ticket DataFrame
Returns:
Cleaned DataFrame with validation report
"""
validation_report = {}
# 1. Handle missing values
validation_report['missing_before'] = df.isnull().sum().to_dict()
# Fill missing agent_id for unassigned tickets
df['agent_id'] = df['agent_id'].fillna('UNASSIGNED')
# Fill missing categories
df['category'] = df['category'].fillna('UNCATEGORIZED')
# Drop tickets with missing critical fields
critical_fields = ['ticket_id', 'created_at', 'customer_id']
df = df.dropna(subset=critical_fields)
validation_report['missing_after'] = df.isnull().sum().to_dict()
# 2. Remove duplicates
validation_report['duplicates_found'] = df.duplicated(subset=['ticket_id']).sum()
df = df.drop_duplicates(subset=['ticket_id'], keep='first')
# 3. Validate data types and ranges
df['created_at'] = pd.to_datetime(df['created_at'], errors='coerce')
df['resolved_at'] = pd.to_datetime(df['resolved_at'], errors='coerce')
# 4. Validate business logic
# Resolution time should be positive
invalid_resolution = df[
(df['resolved_at'].notna()) &
(df['resolved_at'] < df['created_at'])
]
validation_report['invalid_resolution_times'] = len(invalid_resolution)
# Fix by setting to None
df.loc[df['resolved_at'] < df['created_at'], 'resolved_at'] = None
# 5. Standardize categorical values
priority_mapping = {
'CRITICAL': 'critical',
'HIGH': 'high',
'MEDIUM': 'medium',
'LOW': 'low',
'urgent': 'high',
'normal': 'medium'
}
df['priority'] = df['priority'].replace(priority_mapping)
# 6. Outlier detection for response times
if 'first_response_time' in df.columns:
q1 = df['first_response_time'].quantile(0.25)
q3 = df['first_response_time'].quantile(0.75)
iqr = q3 - q1
outlier_threshold = q3 + (3 * iqr)
validation_report['response_time_outliers'] = (
df['first_response_time'] > outlier_threshold
).sum()
validation_report['final_row_count'] = len(df)
return df, validation_report
4. GroupBy and Aggregation Operations
Multi-level Grouping for Team Analytics
# Complex groupby operations for team performance
def analyze_team_performance(tickets_df):
"""
Perform multi-level grouping for team and agent analytics.
Returns:
Multiple DataFrames with different aggregation levels
"""
# Level 1: Team-level metrics
team_metrics = tickets_df.groupby('agent_team').agg({
'ticket_id': 'count',
'resolution_time': ['mean', 'median', 'std', 'min', 'max'],
'csat_score': ['mean', 'count'],
'resolution_sla_met': 'mean',
'reopened': 'sum'
})
# Level 2: Team + Priority breakdown
team_priority_metrics = tickets_df.groupby(
['agent_team', 'priority']
)['ticket_id'].count().unstack(fill_value=0)
# Level 3: Team + Agent detailed metrics
team_agent_metrics = tickets_df.groupby(
['agent_team', 'agent_id', 'agent_name']
).agg({
'ticket_id': 'count',
'resolution_time': 'mean',
'csat_score': 'mean',
'resolution_sla_met': 'mean'
})
# Calculate team rankings
team_metrics['rank_by_volume'] = team_metrics['ticket_id']['count'].rank(
ascending=False
)
team_metrics['rank_by_csat'] = team_metrics['csat_score']['mean'].rank(
ascending=False
)
return team_metrics, team_priority_metrics, team_agent_metrics
# Custom aggregation functions
def calculate_p95(series):
"""Calculate 95th percentile."""
return series.quantile(0.95)
def calculate_p99(series):
"""Calculate 99th percentile."""
return series.quantile(0.99)
# Advanced groupby with custom aggregations
def detailed_response_time_analysis(tickets_df):
"""Calculate detailed response time statistics."""
return tickets_df.groupby('priority').agg({
'first_response_time': [
'count',
'mean',
'median',
'std',
'min',
'max',
calculate_p95,
calculate_p99
]
})
5. Merging and Joining Data
Complex Join Operations
# Merge ticket, customer, and agent data
def create_comprehensive_dataset(tickets_df, customers_df, agents_df, csat_df):
"""
Merge multiple data sources into comprehensive dataset.
Args:
tickets_df: Ticket information
customers_df: Customer information
agents_df: Agent information
csat_df: Customer satisfaction scores
Returns:
Merged DataFrame with all relevant information
"""
# Step 1: Merge tickets with customers (left join - keep all tickets)
data = tickets_df.merge(
customers_df[['customer_id', 'name', 'tier', 'industry', 'contract_value']],
on='customer_id',
how='left',
suffixes=('', '_customer')
)
# Step 2: Merge with agents (left join)
data = data.merge(
agents_df[['agent_id', 'name', 'team', 'hire_date', 'specialization']],
on='agent_id',
how='left',
suffixes=('', '_agent')
)
# Step 3: Merge with CSAT scores (left join)
data = data.merge(
csat_df[['ticket_id', 'csat_score', 'csat_comment']],
on='ticket_id',
how='left'
)
# Validate merge results
print(f"Original tickets: {len(tickets_df)}")
print(f"After merges: {len(data)}")
print(f"Customers matched: {data['name_customer'].notna().sum()}")
print(f"Agents matched: {data['name_agent'].notna().sum()}")
print(f"CSAT scores available: {data['csat_score'].notna().sum()}")
return data
# Concat operations for combining time periods
def combine_historical_data(data_sources):
"""
Combine data from multiple time periods or sources.
Args:
data_sources: List of DataFrames to combine
Returns:
Combined DataFrame with source tracking
"""
# Add source identifier to each DataFrame
for i, df in enumerate(data_sources):
df['source_batch'] = f'batch_{i+1}'
# Concatenate vertically
combined = pd.concat(data_sources, ignore_index=True)
# Remove duplicates (prefer newer data)
combined = combined.sort_values('updated_at', ascending=False)
combined = combined.drop_duplicates(subset=['ticket_id'], keep='first')
return combined
6. Time Series Analysis
Resampling and Rolling Windows
# Time series operations for support metrics
def calculate_rolling_metrics(tickets_df, window_days=7):
"""
Calculate rolling window metrics for trend analysis.
Args:
tickets_df: Ticket DataFrame with datetime index
window_days: Window size in days
Returns:
DataFrame with rolling metrics
"""
# Prepare time series
ts_data = tickets_df.set_index('created_at').sort_index()
# Daily aggregation
daily_metrics = ts_data.resample('D').agg({
'ticket_id': 'count',
'resolution_time': 'mean',
'csat_score': 'mean',
'resolution_sla_met': 'mean'
}).rename(columns={'ticket_id': 'daily_tickets'})
# Rolling window calculations
window = window_days
daily_metrics['tickets_rolling_avg'] = (
daily_metrics['daily_tickets'].rolling(window).mean()
)
daily_metrics['tickets_rolling_std'] = (
daily_metrics['daily_tickets'].rolling(window).std()
)
# Calculate control limits for anomaly detection
daily_metrics['upper_control_limit'] = (
daily_metrics['tickets_rolling_avg'] +
(2 * daily_metrics['tickets_rolling_std'])
)
daily_metrics['lower_control_limit'] = (
daily_metrics['tickets_rolling_avg'] -
(2 * daily_metrics['tickets_rolling_std'])
).clip(lower=0)
# Flag anomalies
daily_metrics['is_anomaly'] = (
(daily_metrics['daily_tickets'] > daily_metrics['upper_control_limit']) |
(daily_metrics['daily_tickets'] < daily_metrics['lower_control_limit'])
)
return daily_metrics
# Business day calculations
def calculate_business_day_metrics(tickets_df):
"""Calculate metrics excluding weekends and holidays."""
from pandas.tseries.offsets import CustomBusinessDay
# Define US holidays (customize as needed)
us_bd = CustomBusinessDay()
# Filter to business days only
tickets_df['is_business_day'] = tickets_df['created_at'].dt.dayofweek < 5
business_tickets = tickets_df[tickets_df['is_business_day']]
# Calculate business day metrics
bd_metrics = business_tickets.groupby(
business_tickets['created_at'].dt.date
).agg({
'ticket_id': 'count',
'resolution_time': 'mean'
})
return bd_metrics
7. Pivot Tables and Cross-tabulation
Creating Management Reports
# Pivot tables for executive reporting
def create_executive_dashboard_data(tickets_df):
"""
Create pivot tables for executive dashboard.
Returns:
Dictionary of pivot tables for different views
"""
dashboards = {}
# 1. Tickets by Team and Priority
dashboards['team_priority'] = pd.pivot_table(
tickets_df,
values='ticket_id',
index='agent_team',
columns='priority',
aggfunc='count',
fill_value=0,
margins=True,
margins_name='Total'
)
# 2. Average Resolution Time by Team and Channel
dashboards['resolution_by_team_channel'] = pd.pivot_table(
tickets_df,
values='resolution_time',
index='agent_team',
columns='channel',
aggfunc='mean',
fill_value=0
)
# 3. SLA Compliance by Priority and Week
tickets_df['week'] = tickets_df['created_at'].dt.to_period('W')
dashboards['sla_compliance_weekly'] = pd.pivot_table(
tickets_df,
values='resolution_sla_met',
index='week',
columns='priority',
aggfunc='mean',
fill_value=0
)
# 4. CSAT by Agent and Customer Tier
dashboards['csat_by_agent_tier'] = pd.pivot_table(
tickets_df,
values='csat_score',
index='agent_name',
columns='customer_tier',
aggfunc=['mean', 'count'],
fill_value=0
)
# 5. Ticket Volume Heatmap (Day of Week vs Hour)
tickets_df['day_of_week'] = tickets_df['created_at'].dt.day_name()
tickets_df['hour'] = tickets_df['created_at'].dt.hour
dashboards['volume_heatmap'] = pd.pivot_table(
tickets_df,
values='ticket_id',
index='day_of_week',
columns='hour',
aggfunc='count',
fill_value=0
)
return dashboards
# Cross-tabulation for category analysis
def analyze_category_distribution(tickets_df):
"""Create cross-tabs for ticket category analysis."""
# Category vs Priority
category_priority = pd.crosstab(
tickets_df['category'],
tickets_df['priority'],
normalize='index', # Row percentages
margins=True
)
# Category vs Team (with counts)
category_team = pd.crosstab(
tickets_df['category'],
tickets_df['agent_team'],
margins=True
)
return category_priority, category_team
8. Data Export and Reporting
Export to Multiple Formats
# Export data for stakeholder reporting
def export_monthly_report(tickets_df, output_dir, month):
"""
Export comprehensive monthly report in multiple formats.
Args:
tickets_df: Ticket data for the month
output_dir: Directory to save reports
month: Month identifier (e.g., '2024-01')
"""
import os
from datetime import datetime
# 1. Export to Excel with multiple sheets
excel_path = os.path.join(output_dir, f'support_report_{month}.xlsx')
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
# Summary sheet
summary = tickets_df.groupby('priority').agg({
'ticket_id': 'count',
'resolution_time': ['mean', 'median'],
'csat_score': 'mean',
'resolution_sla_met': 'mean'
})
summary.to_excel(writer, sheet_name='Summary')
# Team metrics sheet
team_metrics = tickets_df.groupby('agent_team').agg({
'ticket_id': 'count',
'resolution_time': 'mean',
'csat_score': 'mean'
})
team_metrics.to_excel(writer, sheet_name='Team Metrics')
# Raw data sheet (limited to first 10000 rows)
tickets_df.head(10000).to_excel(
writer,
sheet_name='Raw Data',
index=False
)
# 2. Export to CSV for data analysis
csv_path = os.path.join(output_dir, f'tickets_{month}.csv')
tickets_df.to_csv(csv_path, index=False, encoding='utf-8')
# 3. Export to JSON for API consumption
json_path = os.path.join(output_dir, f'metrics_{month}.json')
metrics = {
'total_tickets': int(tickets_df['ticket_id'].count()),
'avg_resolution_time': float(tickets_df['resolution_time'].mean()),
'sla_compliance': float(tickets_df['resolution_sla_met'].mean()),
'avg_csat': float(tickets_df['csat_score'].mean()),
'by_priority': tickets_df.groupby('priority')['ticket_id'].count().to_dict()
}
with open(json_path, 'w') as f:
import json
json.dump(metrics, f, indent=2, default=str)
# 4. Export to Parquet for efficient storage
parquet_path = os.path.join(output_dir, f'tickets_{month}.parquet')
tickets_df.to_parquet(parquet_path, compression='snappy', index=False)
print(f"Reports exported to {output_dir}")
print(f" - Excel: {excel_path}")
print(f" - CSV: {csv_path}")
print(f" - JSON: {json_path}")
print(f" - Parquet: {parquet_path}")
# Format DataFrames for presentation
def format_for_presentation(df):
"""Format DataFrame for stakeholder presentation."""
# Round numeric columns
numeric_cols = df.select_dtypes(include=['float64', 'float32']).columns
df[numeric_cols] = df[numeric_cols].round(2)
# Format percentages
percentage_cols = [col for col in df.columns if 'rate' in col or 'pct' in col]
for col in percentage_cols:
df[col] = df[col].apply(lambda x: f"{x*100:.1f}%")
# Format currency if applicable
currency_cols = [col for col in df.columns if 'revenue' in col or 'value' in col]
for col in currency_cols:
df[col] = df[col].apply(lambda x: f"${x:,.2f}")
return df
9. Performance Optimization
Memory Optimization Techniques
# Optimize DataFrame memory usage
def optimize_dataframe_memory(df):
"""
Reduce DataFrame memory footprint.
Args:
df: DataFrame to optimize
Returns:
Optimized DataFrame with memory usage report
"""
initial_memory = df.memory_usage(deep=True).sum() / 1024**2
# Optimize integer columns
int_cols = df.select_dtypes(include=['int64']).columns
for col in int_cols:
col_min = df[col].min()
col_max = df[col].max()
if col_min >= 0:
if col_max < 255:
df[col] = df[col].astype('uint8')
elif col_max < 65535:
df[col] = df[col].astype('uint16')
elif col_max < 4294967295:
df[col] = df[col].astype('uint32')
else:
if col_min > -128 and col_max < 127:
df[col] = df[col].astype('int8')
elif col_min > -32768 and col_max < 32767:
df[col] = df[col].astype('int16')
elif col_min > -2147483648 and col_max < 2147483647:
df[col] = df[col].astype('int32')
# Optimize float columns
float_cols = df.select_dtypes(include=['float64']).columns
df[float_cols] = df[float_cols].astype('float32')
# Convert object columns to category if cardinality is low
object_cols = df.select_dtypes(include=['object']).columns
for col in object_cols:
num_unique = df[col].nunique()
num_total = len(df[col])
if num_unique / num_total < 0.5: # Less than 50% unique values
df[col] = df[col].astype('category')
final_memory = df.memory_usage(deep=True).sum() / 1024**2
reduction = (1 - final_memory/initial_memory) * 100
print(f"Memory usage reduced from {initial_memory:.2f} MB to {final_memory:.2f} MB")
print(f"Reduction: {reduction:.1f}%")
return df
# Chunked processing for large datasets
def process_large_dataset_in_chunks(file_path, chunk_size=10000):
"""
Process large CSV files in chunks to avoid memory issues.
Args:
file_path: Path to large CSV file
chunk_size: Number of rows per chunk
Returns:
Aggregated results from all chunks
"""
# Initialize aggregation containers
total_tickets = 0
priority_counts = {}
# Process in chunks
for chunk in pd.read_csv(file_path, chunksize=chunk_size):
# Process each chunk
chunk = clean_ticket_data(chunk)[0]
# Aggregate metrics
total_tickets += len(chunk)
chunk_priority = chunk['priority'].value_counts().to_dict()
for priority, count in chunk_priority.items():
priority_counts[priority] = priority_counts.get(priority, 0) + count
return {
'total_tickets': total_tickets,
'priority_distribution': priority_counts
}
10. Data Quality and Validation
Validation Framework
# Comprehensive data quality checks
class DataQualityValidator:
"""Validate data quality for support ticket datasets."""
def __init__(self, df):
self.df = df
self.issues = []
def check_required_columns(self, required_cols):
"""Ensure all required columns are present."""
missing = set(required_cols) - set(self.df.columns)
if missing:
self.issues.append(f"Missing required columns: {missing}")
return len(missing) == 0
def check_null_percentages(self, max_null_pct=0.1):
"""Check if null percentage exceeds threshold."""
null_pct = self.df.isnull().sum() / len(self.df)
excessive_nulls = null_pct[null_pct > max_null_pct]
if not excessive_nulls.empty:
self.issues.append(
f"Columns with >{max_null_pct*100}% nulls: {excessive_nulls.to_dict()}"
)
return excessive_nulls.empty
def check_duplicate_ids(self, id_column='ticket_id'):
"""Check for duplicate ticket IDs."""
duplicates = self.df[id_column].duplicated().sum()
if duplicates > 0:
self.issues.append(f"Found {duplicates} duplicate ticket IDs")
return duplicates == 0
def check_date_logic(self):
"""Validate date field logic."""
issues_found = 0
# Created date should be before resolved date
if 'created_at' in self.df.columns and 'resolved_at' in self.df.columns:
invalid = (
self.df['resolved_at'].notna() &
(self.df['resolved_at'] < self.df['created_at'])
).sum()
if invalid > 0:
self.issues.append(
f"Found {invalid} tickets with resolved_at before created_at"
)
issues_found += invalid
# Check for future dates
now = pd.Timestamp.now()
for date_col in ['created_at', 'resolved_at', 'first_response_at']:
if date_col in self.df.columns:
future_dates = (self.df[date_col] > now).sum()
if future_dates > 0:
self.issues.append(
f"Found {future_dates} future dates in {date_col}"
)
issues_found += future_dates
return issues_found == 0
def check_value_ranges(self, range_checks):
"""
Check if values are within expected ranges.
Args:
range_checks: Dict with column: (min, max) pairs
"""
for col, (min_val, max_val) in range_checks.items():
if col in self.df.columns:
out_of_range = (
(self.df[col] < min_val) | (self.df[col] > max_val)
).sum()
if out_of_range > 0:
self.issues.append(
f"{col}: {out_of_range} values outside range [{min_val}, {max_val}]"
)
def generate_report(self):
"""Generate comprehensive validation report."""
return {
'total_rows': len(self.df),
'total_columns': len(self.df.columns),
'issues_found': len(self.issues),
'issues': self.issues,
'memory_usage_mb': self.df.memory_usage(deep=True).sum() / 1024**2,
'null_summary': self.df.isnull().sum().to_dict()
}
11. Testing Pandas Operations
Unit Testing with pytest
# pytest fixtures and tests for data operations
import pytest
import pandas as pd
import numpy as np
from datetime import datetime, timedelta
@pytest.fixture
def sample_ticket_data():
"""Create sample ticket data for testing."""
np.random.seed(42)
n_tickets = 100
return pd.DataFrame({
'ticket_id': range(1, n_tickets + 1),
'created_at': pd.date_range('2024-01-01', periods=n_tickets, freq='H'),
'priority': np.random.choice(['low', 'medium', 'high'], n_tickets),
'status': np.random.choice(['open', 'in_progress', 'resolved'], n_tickets),
'agent_id': np.random.choice(['A001', 'A002', 'A003'], n_tickets),
'customer_id': np.random.choice(['C001', 'C002', 'C003'], n_tickets)
})
def test_ticket_data_shape(sample_ticket_data):
"""Test that sample data has expected shape."""
assert sample_ticket_data.shape == (100, 6)
assert 'ticket_id' in sample_ticket_data.columns
def test_sla_calculation():
"""Test SLA calculation logic."""
df = pd.DataFrame({
'ticket_id': [1, 2],
'created_at': pd.to_datetime(['2024-01-01 10:00', '2024-01-01 11:00']),
'first_response_at': pd.to_datetime(['2024-01-01 11:00', '2024-01-01 14:00']),
'sla_target_hours': [2, 2]
})
df['response_time_hours'] = (
df['first_response_at'] - df['created_at']
).dt.total_seconds() / 3600
df['sla_met'] = df['response_time_hours'] <= df['sla_target_hours']
assert df.loc[0, 'sla_met'] == True
assert df.loc[1, 'sla_met'] == False
def test_data_cleaning_removes_nulls(sample_ticket_data):
"""Test that data cleaning handles null values."""
# Add some null values
df = sample_ticket_data.copy()
df.loc[0, 'agent_id'] = None
df.loc[1, 'customer_id'] = None
# Apply cleaning
cleaned, report = clean_ticket_data(df)
# Verify nulls were handled
assert 'UNASSIGNED' in cleaned['agent_id'].values
assert report['missing_before']['agent_id'] == 1
def test_groupby_aggregation(sample_ticket_data):
"""Test groupby aggregation produces correct results."""
result = sample_ticket_data.groupby('priority')['ticket_id'].count()
assert result.sum() == 100
assert all(priority in result.index for priority in ['low', 'medium', 'high'])
Best Practices
1. Always Use Vectorized Operations
Avoid Python loops when working with pandas. Use vectorized operations for better performance:
# Bad - slow loop
for idx, row in df.iterrows():
df.at[idx, 'new_col'] = row['col1'] * row['col2']
# Good - vectorized operation
df['new_col'] = df['col1'] * df['col2']
2. Use Method Chaining for Readability
result = (
df
.query('status == "resolved"')
.groupby('agent_id')
.agg({'resolution_time': 'mean'})
.sort_values('resolution_time')
.head(10)
)
3. Optimize Data Types Early
Convert to appropriate data types immediately after loading to save memory and improve performance.
4. Use .loc[] and .iloc[] Explicitly
Avoid chained indexing which can lead to SettingWithCopyWarning and unexpected behavior.
5. Handle Time Zones Properly
Always work with timezone-aware datetime objects for support data across regions.
6. Document Data Transformations
Add comments explaining business logic in complex transformations.
7. Validate Data at Every Step
Implement validation checks after major transformations to catch issues early.
8. Use Appropriate Index Types
Set meaningful indices (datetime for time series, ticket_id for lookups) to improve performance.
Common Pitfalls to Avoid
- SettingWithCopyWarning: Always use
.loc[]for setting values - Memory Issues: Process large datasets in chunks or optimize data types
- Lost Index: Remember that many operations return new DataFrames without preserving the index
- Implicit Type Conversion: Be explicit about data type conversions
- Ambiguous Truth Values: Use
.any()or.all()when evaluating Series in boolean context - Mixing Time Zones: Ensure consistent timezone handling across datetime columns
Integration Patterns
With pytest for Testing
Always write tests for data transformation functions using pytest fixtures and parametrize decorators.
With SQLAlchemy for Database Operations
Use SQLAlchemy engines for database connections and leverage pandas' read_sql and to_sql methods.
With PostgreSQL for Data Persistence
Store processed metrics in PostgreSQL for historical tracking and dashboard consumption.
With Excel for Stakeholder Reports
Use pd.ExcelWriter with the openpyxl engine for creating multi-sheet Excel reports.
Performance Guidelines
- Use categorical data types for columns with low cardinality (< 50% unique values)
- Process in chunks when dataset exceeds available memory
- Use query() method for complex filtering (compiles to optimized code)
- Avoid apply() when possible - use vectorized operations instead
- Use eval() for complex expressions on large DataFrames
- Set appropriate dtypes when reading CSV files to avoid inference overhead
- Use copy() judiciously - only when you need true copies to avoid memory waste
Conclusion
You are now equipped to handle comprehensive data analysis and manipulation tasks for customer support operations using pandas. Apply these patterns to analyze ticket data, track SLA compliance, measure agent performance, and generate actionable insights for support teams. Always prioritize data quality, performance optimization, and clear, maintainable code.