| name | data-modeler |
| description | Design data models with Pydantic schemas, comprehensive validation rules, type annotations, and relationship mappings. |
| allowed-tools | Read, Write, Edit |
Purpose
The data-modeler skill provides comprehensive guidance for designing robust data models using Pydantic, Python's most popular data validation library. This skill helps the Architecture Designer agent create type-safe, validated data structures that serve as the foundation for feature implementations.
This skill emphasizes:
- Type Safety: Complete type annotations for all fields
- Validation: Comprehensive validators for business rules
- Documentation: Clear field descriptions and constraints
- Relationships: Proper modeling of entity relationships
- Serialization: Correct handling of JSON/dict conversion
The data-modeler skill ensures that data models are not just simple data containers, but intelligent objects that enforce business rules, validate data integrity, and provide clear contracts for data interchange.
When to Use
This skill auto-activates when the agent describes:
- "Design data models for..."
- "Create Pydantic schemas for..."
- "Define data structures with..."
- "Model the data with..."
- "Create validation rules for..."
- "Define entity relationships..."
- "Specify field constraints for..."
- "Design request/response schemas..."
Provided Capabilities
1. Pydantic Schema Design
What it provides:
- BaseModel class structure
- Field definitions with types and constraints
- Default values and factory functions
- Optional vs required fields
- Nested model composition
- Model inheritance patterns
Guidance:
- Use
Field()for metadata and constraints - Provide
descriptionfor all fields - Set appropriate
defaultordefault_factory - Use
Optional[T]for nullable fields - Validate field names follow conventions
Example:
from pydantic import BaseModel, Field, validator
from typing import Optional, List
from datetime import datetime
from enum import Enum
class UserRole(str, Enum):
"""User role enumeration."""
ADMIN = "admin"
USER = "user"
GUEST = "guest"
class Address(BaseModel):
"""Nested address model."""
street: str = Field(..., description="Street address", min_length=1, max_length=200)
city: str = Field(..., description="City name", min_length=1, max_length=100)
state: str = Field(..., description="State/province code", min_length=2, max_length=2)
postal_code: str = Field(..., description="Postal/ZIP code", regex=r"^\d{5}(-\d{4})?$")
country: str = Field(default="US", description="Country code (ISO 3166-1 alpha-2)")
class Config:
schema_extra = {
"example": {
"street": "123 Main St",
"city": "Springfield",
"state": "IL",
"postal_code": "62701",
"country": "US"
}
}
class User(BaseModel):
"""User data model with comprehensive validation."""
# Identity fields
id: Optional[int] = Field(None, description="User ID (auto-generated)")
username: str = Field(..., description="Unique username", min_length=3, max_length=50)
email: str = Field(..., description="Email address (validated)")
# Profile fields
full_name: str = Field(..., description="User's full name", min_length=1, max_length=200)
role: UserRole = Field(default=UserRole.USER, description="User role")
is_active: bool = Field(default=True, description="Account active status")
# Nested model
address: Optional[Address] = Field(None, description="Mailing address")
# Lists
tags: List[str] = Field(default_factory=list, description="User tags")
# Timestamps
created_at: datetime = Field(default_factory=datetime.utcnow, description="Creation timestamp")
updated_at: Optional[datetime] = Field(None, description="Last update timestamp")
class Config:
"""Pydantic model configuration."""
# Allow ORM models to be parsed
orm_mode = True
# Use enum values in JSON
use_enum_values = True
# Example for documentation
schema_extra = {
"example": {
"username": "johndoe",
"email": "john@example.com",
"full_name": "John Doe",
"role": "user",
"address": {
"street": "123 Main St",
"city": "Springfield",
"state": "IL",
"postal_code": "62701"
},
"tags": ["verified", "premium"]
}
}
2. Field-Level Validators
What it provides:
@validatordecorator usage- Value transformation
- Cross-field validation
- Custom error messages
- Pre and post validation
Validation Types:
- Format validation: Email, URL, phone, regex
- Range validation: min/max for numbers, length for strings
- Business rules: Custom logic validation
- Referential integrity: Cross-field checks
Example:
from pydantic import BaseModel, Field, validator, root_validator
import re
class UserRegistration(BaseModel):
"""User registration with comprehensive validation."""
username: str = Field(..., min_length=3, max_length=50)
email: str = Field(...)
password: str = Field(..., min_length=8)
password_confirm: str = Field(..., min_length=8)
age: int = Field(..., ge=13, le=120)
phone: Optional[str] = Field(None)
@validator('username')
def validate_username(cls, v):
"""Validate username format."""
if not re.match(r'^[a-zA-Z0-9_-]+$', v):
raise ValueError('Username must contain only letters, numbers, hyphens, and underscores')
# Check against reserved names
reserved = ['admin', 'root', 'system']
if v.lower() in reserved:
raise ValueError(f'Username "{v}" is reserved')
return v.lower() # Normalize to lowercase
@validator('email')
def validate_email(cls, v):
"""Validate email format."""
email_regex = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
if not re.match(email_regex, v):
raise ValueError('Invalid email format')
return v.lower() # Normalize to lowercase
@validator('password')
def validate_password_strength(cls, v):
"""Validate password strength."""
if not re.search(r'[A-Z]', v):
raise ValueError('Password must contain at least one uppercase letter')
if not re.search(r'[a-z]', v):
raise ValueError('Password must contain at least one lowercase letter')
if not re.search(r'\d', v):
raise ValueError('Password must contain at least one digit')
if not re.search(r'[!@#$%^&*(),.?":{}|<>]', v):
raise ValueError('Password must contain at least one special character')
return v
@validator('phone')
def validate_phone(cls, v):
"""Validate phone number format."""
if v is None:
return v
# Remove all non-digit characters
digits = re.sub(r'\D', '', v)
if len(digits) != 10:
raise ValueError('Phone number must be 10 digits')
# Return formatted phone
return f'({digits[:3]}) {digits[3:6]}-{digits[6:]}'
@root_validator
def validate_passwords_match(cls, values):
"""Validate that passwords match (cross-field validation)."""
password = values.get('password')
password_confirm = values.get('password_confirm')
if password != password_confirm:
raise ValueError('Passwords do not match')
return values
3. Model-Level Validators
What it provides:
@root_validatorfor cross-field validation- Pre-validation transformations
- Post-validation checks
- Complex business rule enforcement
Example:
from pydantic import BaseModel, Field, root_validator
from datetime import date, datetime
from typing import Optional
class EventBooking(BaseModel):
"""Event booking with complex validation."""
event_name: str = Field(...)
start_date: date = Field(...)
end_date: date = Field(...)
attendees: int = Field(..., ge=1, le=1000)
room_capacity: int = Field(..., ge=1)
is_catering: bool = Field(default=False)
catering_headcount: Optional[int] = Field(None, ge=1)
@root_validator(pre=True)
def convert_date_strings(cls, values):
"""Pre-validation: Convert date strings to date objects."""
for field in ['start_date', 'end_date']:
if field in values and isinstance(values[field], str):
values[field] = datetime.strptime(values[field], '%Y-%m-%d').date()
return values
@root_validator
def validate_dates(cls, values):
"""Validate date logic."""
start = values.get('start_date')
end = values.get('end_date')
if start and end:
# End must be after start
if end < start:
raise ValueError('End date must be after start date')
# Maximum event duration: 30 days
if (end - start).days > 30:
raise ValueError('Event duration cannot exceed 30 days')
# Must be future dates
if start < date.today():
raise ValueError('Event cannot be in the past')
return values
@root_validator
def validate_capacity(cls, values):
"""Validate room capacity vs attendees."""
attendees = values.get('attendees')
capacity = values.get('room_capacity')
if attendees and capacity:
if attendees > capacity:
raise ValueError(f'Attendees ({attendees}) exceeds room capacity ({capacity})')
return values
@root_validator
def validate_catering(cls, values):
"""Validate catering requirements."""
is_catering = values.get('is_catering')
catering_headcount = values.get('catering_headcount')
attendees = values.get('attendees')
if is_catering:
# Catering headcount required if catering enabled
if not catering_headcount:
raise ValueError('Catering headcount required when catering is enabled')
# Catering headcount cannot exceed attendees
if catering_headcount > attendees:
raise ValueError('Catering headcount cannot exceed number of attendees')
else:
# No catering headcount if catering disabled
if catering_headcount:
raise ValueError('Catering headcount specified but catering is disabled')
return values
4. Type Annotations and Constraints
What it provides:
- Proper use of typing module
- Generic types (List, Dict, Set, Tuple)
- Union types and Optional
- Literal types for constants
- Custom types
Example:
from pydantic import BaseModel, Field, constr, conint, confloat, conlist
from typing import List, Dict, Set, Optional, Union, Literal, Any
from datetime import datetime
# Custom constrained types
Username = constr(regex=r'^[a-zA-Z0-9_-]+$', min_length=3, max_length=50)
PositiveInt = conint(gt=0)
Percentage = confloat(ge=0.0, le=100.0)
NonEmptyList = conlist(str, min_items=1)
class ProductStatus(str, Enum):
"""Product status enum."""
DRAFT = "draft"
ACTIVE = "active"
ARCHIVED = "archived"
class Product(BaseModel):
"""Product model with advanced type annotations."""
# Basic types with constraints
id: Optional[int] = None
name: constr(min_length=1, max_length=200)
sku: constr(regex=r'^[A-Z]{3}-\d{6}$') # Format: ABC-123456
# Numeric types with constraints
price: confloat(gt=0.0, le=1000000.0)
discount_percentage: Percentage = 0.0
stock_quantity: PositiveInt
# Enum
status: ProductStatus = ProductStatus.DRAFT
# Collections
tags: List[str] = Field(default_factory=list)
categories: Set[str] = Field(default_factory=set)
attributes: Dict[str, Any] = Field(default_factory=dict)
# Union types
metadata: Union[Dict[str, str], None] = None
# Literal type (specific values only)
measurement_unit: Literal["kg", "lb", "oz", "g"]
# Nested models
dimensions: Optional['ProductDimensions'] = None
# Timestamps
created_at: datetime = Field(default_factory=datetime.utcnow)
updated_at: Optional[datetime] = None
class ProductDimensions(BaseModel):
"""Product dimensions (nested model)."""
length: confloat(gt=0)
width: confloat(gt=0)
height: confloat(gt=0)
unit: Literal["cm", "in", "m"]
@property
def volume(self) -> float:
"""Calculate volume."""
return self.length * self.width * self.height
# Enable forward reference
Product.update_forward_refs()
5. Relationship Mappings
What it provides:
- One-to-one relationships
- One-to-many relationships
- Many-to-many relationships
- Foreign key references
- Embedded vs referenced documents
Relationship Patterns:
One-to-One:
class UserProfile(BaseModel):
"""User profile (one-to-one with User)."""
user_id: int = Field(..., description="Foreign key to User")
bio: Optional[str] = Field(None, max_length=500)
avatar_url: Optional[str] = None
class User(BaseModel):
"""User with one-to-one profile."""
id: int
username: str
profile: Optional[UserProfile] = None # Embedded relationship
One-to-Many:
class Comment(BaseModel):
"""Comment (many comments per post)."""
id: int
post_id: int = Field(..., description="Foreign key to Post")
content: str
created_at: datetime
class Post(BaseModel):
"""Post with many comments."""
id: int
title: str
content: str
comments: List[Comment] = Field(default_factory=list) # Embedded list
Many-to-Many:
class Tag(BaseModel):
"""Tag entity."""
id: int
name: str
class Article(BaseModel):
"""Article with many tags."""
id: int
title: str
tag_ids: List[int] = Field(default_factory=list) # Reference by ID
# OR
tags: List[Tag] = Field(default_factory=list) # Embedded tags
6. Serialization Strategies
What it provides:
- JSON serialization/deserialization
dict()conversion with exclusionsjson()output with formatting- Custom serializers for complex types
- Alias usage for field naming
Example:
from pydantic import BaseModel, Field
from datetime import datetime
from typing import Optional
class ApiResponse(BaseModel):
"""API response with serialization control."""
id: int
name: str
internal_code: str = Field(..., alias="code") # Use 'code' in JSON
created_at: datetime
secret_key: Optional[str] = None # Should not be exposed
_internal_state: str = "processing" # Private field (not serialized)
class Config:
# Allow field aliases
allow_population_by_field_name = True
# Custom JSON encoders
json_encoders = {
datetime: lambda v: v.isoformat()
}
# Usage
response = ApiResponse(
id=1,
name="Test",
code="ABC123",
created_at=datetime.utcnow(),
secret_key="secret"
)
# Serialize to dict (exclude secret)
data = response.dict(exclude={'secret_key'})
# {'id': 1, 'name': 'Test', 'internal_code': 'ABC123', 'created_at': datetime(...)}
# Serialize to JSON with alias
json_str = response.json(by_alias=True, exclude={'secret_key'})
# {"id": 1, "name": "Test", "code": "ABC123", "created_at": "2025-10-29T..."}
# Include/exclude specific fields
data = response.dict(include={'id', 'name'})
# {'id': 1, 'name': 'Test'}
Usage Guide
Step 1: Identify Data Entities
Requirements → Entities → Attributes → Relationships
Step 2: Define Base Models
Create BaseModel → Add fields → Set types → Add descriptions
Step 3: Add Constraints
Field(...) → min/max → regex → custom constraints
Step 4: Implement Validators
@validator → business rules → error messages → transformations
Step 5: Model Relationships
Identify relationships → Choose embedding vs reference → Add foreign keys
Step 6: Configure Serialization
Config class → JSON encoders → Aliases → ORM mode
Step 7: Add Examples
schema_extra → Example data → Documentation
Step 8: Test Models
Create instances → Validate data → Test edge cases → Check errors
Best Practices
Use Field() for Metadata
- Always provide descriptions
- Set constraints (min/max, regex)
- Provide examples in Config
Comprehensive Validation
- Validate at field level when possible
- Use root_validator for cross-field logic
- Provide clear error messages
Type Safety
- Use specific types, not Any
- Use Optional[T] for nullable fields
- Use Enum for fixed choices
Documentation
- Description for every field
- Examples in schema_extra
- Docstrings for complex logic
Serialization Control
- Use aliases for API compatibility
- Exclude sensitive fields
- Custom encoders for complex types
Model Organization
- Group related models in same file
- Use inheritance for shared fields
- Keep models focused and cohesive
Resources
data-model-guide.md
Comprehensive data modeling guide including:
- Entity-relationship principles
- Normalization guidelines
- Pydantic model structure best practices
- Validation strategies and patterns
- Type hints and annotations guide
- Field constraints catalog
pydantic-patterns.md
Pydantic-specific patterns and examples:
- BaseModel advanced usage
- Custom validators (field and model level)
- Field validators with dependencies
- Root validators for complex logic
- Config options and settings
- Nested models and composition
- Serialization and deserialization
- ORM mode and database integration
- Complete code examples
Example Usage
Input (from Architecture Designer agent):
"Design data models for a user management system with user profiles, addresses, roles, and audit logging."
Output (data-modeler skill provides):
# Comprehensive data models with validation
from pydantic import BaseModel, Field, validator, root_validator
from typing import Optional, List
from datetime import datetime
from enum import Enum
class UserRole(str, Enum):
"""User roles."""
ADMIN = "admin"
MANAGER = "manager"
USER = "user"
class Address(BaseModel):
"""User address."""
street: str = Field(..., min_length=1, max_length=200)
city: str = Field(..., min_length=1, max_length=100)
state: str = Field(..., min_length=2, max_length=2)
postal_code: str = Field(..., regex=r'^\d{5}(-\d{4})?$')
class UserProfile(BaseModel):
"""User profile information."""
bio: Optional[str] = Field(None, max_length=500)
avatar_url: Optional[str] = None
phone: Optional[str] = Field(None, regex=r'^\(\d{3}\) \d{3}-\d{4}$')
@validator('avatar_url')
def validate_avatar_url(cls, v):
if v and not v.startswith(('http://', 'https://')):
raise ValueError('Avatar URL must be HTTP/HTTPS')
return v
class User(BaseModel):
"""Main user model."""
id: Optional[int] = None
username: str = Field(..., min_length=3, max_length=50)
email: str = Field(...)
full_name: str = Field(..., min_length=1, max_length=200)
role: UserRole = UserRole.USER
is_active: bool = True
# Relationships
profile: Optional[UserProfile] = None
addresses: List[Address] = Field(default_factory=list)
# Audit fields
created_at: datetime = Field(default_factory=datetime.utcnow)
created_by: Optional[int] = None
updated_at: Optional[datetime] = None
updated_by: Optional[int] = None
@validator('email')
def validate_email(cls, v):
import re
if not re.match(r'^[^@]+@[^@]+\.[^@]+$', v):
raise ValueError('Invalid email format')
return v.lower()
class Config:
orm_mode = True
schema_extra = {
"example": {
"username": "johndoe",
"email": "john@example.com",
"full_name": "John Doe",
"role": "user",
"profile": {
"bio": "Software engineer",
"phone": "(555) 123-4567"
},
"addresses": [{
"street": "123 Main St",
"city": "Springfield",
"state": "IL",
"postal_code": "62701"
}]
}
}
Integration
Used By:
- @architecture-designer (Primary) - Phase 2 sub-agent for architecture design
Integrates With:
- architecture-planner skill - Data models designed after component structure
- api-designer skill - Data models used in API request/response schemas
Workflow Position:
- Analysis Specialist completes requirements analysis
- Architecture Designer receives analysis
- architecture-planner skill designs component structure (Step 3)
- data-modeler skill designs data models (Step 4)
- api-designer skill designs API contracts using these models (Step 5)
- Results synthesized into PRP
Version: 2.0.0 Auto-Activation: Yes Phase: 2 - Design & Planning Created: 2025-10-29