| name | design |
| description | Design system architecture, API contracts, and data flows. Use when translating analyzed requirements into technical design for feature implementation. |
| allowed-tools | Read, Write, Edit, Grep, Glob |
Feature Design Skill
Purpose
This skill provides systematic guidance for designing software architecture, API contracts, data models, and workflows based on analyzed requirements.
When to Use
- After requirements analysis is complete
- Need to design technical architecture for a feature
- Defining API contracts and data structures
- Planning module interactions and data flows
- Before starting implementation
Design Workflow
1. Architecture Design
Choose Architectural Pattern:
Review architecture-patterns.md for appropriate patterns:
- Layered Architecture: UI → Business Logic → Data Access
- Modular Architecture: Cohesive modules with clear interfaces
- Event-Driven: Message-based communication
- Microservices: Independent, deployable services (if applicable)
For This Project (Python):
- Follow existing structure:
src/tools/,src/core/,src/utils/ - Use dependency injection for testability
- Keep files under 500 lines (split if needed)
- Maintain single responsibility principle
Define Components:
Component Name: <name>
Responsibility: <what it does>
Dependencies: <what it needs>
Interfaces: <public API>
Deliverable: Component diagram with responsibilities
2. Data Model Design
Define Entities:
- Identify domain entities from requirements
- Define attributes and types
- Specify relationships (one-to-one, one-to-many, many-to-many)
- Define validation rules
- Consider data lifecycle (CRUD operations)
For Python Projects:
from pydantic import BaseModel, Field
from typing import Optional, List
from datetime import datetime
class EntityModel(BaseModel):
"""Entity description."""
id: Optional[int] = None
name: str = Field(..., min_length=1, max_length=255)
created_at: datetime = Field(default_factory=datetime.utcnow)
class Config:
"""Pydantic configuration."""
validate_assignment = True
Deliverable: Data models with Pydantic schemas
3. API Design
Design API Contracts:
Refer to api-design-guide.md for best practices
REST API Pattern:
Resource: /api/v1/resources
Methods:
GET /resources - List resources
GET /resources/{id} - Get single resource
POST /resources - Create resource
PUT /resources/{id} - Update resource (full)
PATCH /resources/{id} - Update resource (partial)
DELETE /resources/{id} - Delete resource
Request Body:
{
"field1": "value",
"field2": 123
}
Response Body:
{
"data": {...},
"meta": {
"timestamp": "2025-01-15T10:30:00Z",
"version": "1.0"
}
}
Error Response:
{
"error": {
"code": "VALIDATION_ERROR",
"message": "Field validation failed",
"details": [...]
}
}
For Internal APIs (Python Functions/Methods):
def process_feature(
input_data: InputModel,
options: Optional[ProcessOptions] = None
) -> ProcessResult:
"""
Process feature with given input.
Args:
input_data: Input data model
options: Optional processing options
Returns:
ProcessResult with outcome
Raises:
ValidationError: If input is invalid
ProcessError: If processing fails
"""
pass
Deliverable: API specification with request/response formats
4. Data Flow Design
Map Data Flows:
- Input sources (user input, API, database, file)
- Processing steps (validation, transformation, business logic)
- Output destinations (response, database, file, external service)
- Error paths and handling
Sequence Diagram Format:
User → API Endpoint → Validator → Business Logic → Repository → Database
↓ ↓ ↓
ValidationError BusinessError DatabaseError
↓ ↓ ↓
Error Handler → Error Response → User
Deliverable: Sequence diagrams for key workflows
5. Module Interaction Design
Define Module Boundaries:
- Interfaces: Public API contracts (abstract classes, protocols)
- Core Logic: Business logic implementation
- Utilities: Helper functions (pure, stateless)
- Data Access: Repository pattern for persistence
Python Module Structure:
src/tools/feature_name/
├── __init__.py # Public exports
├── models.py # Pydantic models
├── interfaces.py # Abstract interfaces
├── core.py # Core business logic
├── repository.py # Data access layer
├── validators.py # Input validation
├── utils.py # Helper functions
└── tests/
├── test_core.py
├── test_validators.py
└── fixtures.py
Dependency Injection Pattern:
class FeatureService:
"""Service with injected dependencies."""
def __init__(
self,
repository: FeatureRepository,
validator: FeatureValidator
):
self.repository = repository
self.validator = validator
Deliverable: Module dependency graph
6. Error Handling Design
Define Error Hierarchy:
class FeatureError(Exception):
"""Base exception for feature."""
pass
class ValidationError(FeatureError):
"""Input validation failed."""
pass
class ProcessingError(FeatureError):
"""Processing failed."""
pass
class NotFoundError(FeatureError):
"""Resource not found."""
pass
Error Handling Strategy:
- Validate early (fail fast)
- Catch specific exceptions
- Log errors with context
- Return meaningful error messages
- Don't expose internal details
Deliverable: Error handling specification
7. Configuration Design
Externalize Configuration:
from pydantic_settings import BaseSettings
class FeatureConfig(BaseSettings):
"""Feature configuration from environment."""
api_key: str
timeout: int = 30
max_retries: int = 3
debug: bool = False
class Config:
env_prefix = "FEATURE_"
case_sensitive = False
Configuration Sources:
- Environment variables (highest priority)
- .env files
- Configuration files (JSON/YAML)
- Default values (lowest priority)
Deliverable: Configuration specification
Output Format
Use the templates/architecture-doc.md template to generate:
# Architecture Design: [Feature Name]
## Overview
Brief description of the feature and design approach.
## Architecture Pattern
[Chosen pattern] with rationale.
## Component Design
### Component 1: [Name]
- **Responsibility**: [What it does]
- **Dependencies**: [What it needs]
- **Interface**: [Public API]
## Data Model
### Entity: [Name]
```python
class EntityModel(BaseModel):
field: str
API Specification
Endpoint: [Method] [Path]
- Request: [Schema]
- Response: [Schema]
- Errors: [Error codes]
Data Flows
[Sequence diagrams or descriptions]
Module Structure
src/tools/feature/
├── ...
Error Handling
[Exception hierarchy and strategy]
Configuration
[Required configuration with defaults]
Testing Strategy
- Unit tests: [What to test]
- Integration tests: [What to test]
- Mocking strategy: [What to mock]
Security Considerations
[From security-checklist.md in analysis phase]
Performance Considerations
- Expected throughput: [N req/s]
- Response time: [< N ms]
- Resource usage: [Memory, CPU]
Implementation Notes
[Any specific guidance for implementation]
Open Questions
- Question 1
- Question 2
## Best Practices
**Architecture:**
- Prefer composition over inheritance
- Design for testability (dependency injection)
- Keep modules loosely coupled
- Follow SOLID principles
- Keep files under 500 lines
**Data Models:**
- Use Pydantic for validation
- Type hint everything
- Provide sensible defaults
- Document field constraints
- Consider backward compatibility
**APIs:**
- RESTful for external APIs
- Clear function signatures for internal APIs
- Consistent naming conventions
- Version APIs from the start
- Document all parameters and return values
**Error Handling:**
- Create specific exception types
- Log errors with sufficient context
- Don't catch exceptions you can't handle
- Provide actionable error messages
- Consider retry strategies
## Supporting Resources
- **architecture-patterns.md**: Common architectural patterns
- **api-design-guide.md**: API design best practices
- **templates/architecture-doc.md**: Output template
## Example Usage
```bash
# 1. Review analysis report from previous phase
Read docs/implementation/feature-name-analysis.md
# 2. Choose architecture pattern
Review architecture-patterns.md
# 3. Design data models
Create models.py with Pydantic schemas
# 4. Design API contracts
Use api-design-guide.md for REST/function APIs
# 5. Design module structure
Follow project conventions (src/tools/...)
# 6. Generate architecture document
Use templates/architecture-doc.md template
# 7. Review and validate
Check design meets requirements from analysis phase
Integration with Feature Implementation Flow
Input: Requirements analysis report Process: Systematic design using patterns and guidelines Output: Architecture document with specs Next Step: Implementation skill for coding
Design Review Checklist
Before proceeding to implementation:
- Architecture pattern chosen and justified
- All components identified with clear responsibilities
- Data models defined with Pydantic schemas
- API contracts specified (endpoints or function signatures)
- Data flows documented (sequence diagrams)
- Module structure follows project conventions
- Error handling strategy defined
- Configuration externalized
- Testing strategy outlined
- Security considerations addressed
- Performance requirements documented
- Design reviewed by peer (if applicable)
- Stakeholder sign-off (if required)