| name | test-generator |
| description | Generate test scaffolding for modules with proper structure, fixtures, and mock configurations. |
| allowed-tools | Read, Write, Edit |
Test Generator Skill
Purpose
This skill provides comprehensive test scaffolding and templates for quickly setting up unit and integration tests with proper structure, fixtures, and mocking configurations. It guides the creation of well-structured, maintainable tests following best practices.
Activation
On-demand via command: /generate-tests <file-path>
Example:
/generate-tests src/tools/example/core.py
When to Use
- Starting tests for a new module
- Need test structure quickly
- Adding tests to existing code
- Setting up test fixtures and mocks
- Creating integration test scaffolding
- Following pytest or Jest best practices
Resources
testing-templates/unit-test.py
Complete pytest unit test template with:
- Proper import structure
- Fixture definitions (sample data, temp files, mocks)
- Test function templates (Arrange-Act-Assert pattern)
- Test class templates
- Parametrize examples
- Mock/patch configurations
- Common assertion patterns
testing-templates/integration-test.py
Complete integration test template with:
- Service integration patterns
- Database integration examples
- File system test patterns
- End-to-end workflow examples
- Cleanup patterns (tmp_path, fixtures)
- Real dependency testing (not mocked)
Provides
Test File Scaffolding
- Proper file structure and organization
- Naming conventions (
test_*.pyor*_test.py) - Import statements
- Test class/function structure
Fixture Setup
- pytest: Sample fixtures for common use cases
- Jest: Mock implementations and spy configurations
- Reusable test data fixtures
- Setup/teardown patterns
Mock Configurations
- unittest.mock: Mock and patch examples
- pytest-mock: pytest-specific mocking
- Jest: Mock modules and functions
- Spy and stub patterns
Coverage Analysis Helpers
- Test organization for better coverage
- Edge case identification
- Boundary testing patterns
Usage Examples
Example 1: Generate Unit Tests for Module
/generate-tests src/tools/doc_fetcher/core.py
Provides:
tests/test_doc_fetcher_core.pystructure- Fixtures for test data
- Test cases for each public function
- Mock configurations for external dependencies
Example 2: Generate Integration Tests for API
/generate-tests src/api/endpoints.py
Provides:
tests/integration/test_endpoints.pystructure- API client fixtures
- Request/response test patterns
- End-to-end workflow tests
Example 3: TypeScript/Jest Tests
/generate-tests src/components/Button.tsx
Provides:
src/components/Button.test.tsxstructure- Jest mock configurations
- Component testing patterns
- Snapshot testing examples
Test Structure Patterns
Arrange-Act-Assert (AAA) Pattern
def test_function_name_condition_expected():
"""Test description."""
# Arrange - Set up test data and conditions
input_data = {"key": "value"}
expected = "result"
# Act - Execute the function under test
result = function_under_test(input_data)
# Assert - Verify the outcome
assert result == expected
Test Class Organization
class TestClassName:
"""Tests for ClassName."""
@pytest.fixture
def instance(self):
"""Create test instance."""
return ClassName()
def test_method_success(self, instance):
"""Test successful method execution."""
result = instance.method()
assert result is not None
def test_method_error_handling(self, instance):
"""Test method handles errors."""
with pytest.raises(ValueError):
instance.method(invalid_input)
Parametrized Tests
@pytest.mark.parametrize("input,expected", [
("test1", "result1"),
("test2", "result2"),
("test3", "result3"),
])
def test_function_with_parameters(input, expected):
"""Test function with multiple inputs."""
result = function_under_test(input)
assert result == expected
Mocking Patterns
Mock External Dependencies
from unittest.mock import Mock, patch
@patch('module.external_service')
def test_with_mocked_service(mock_service):
"""Test with mocked external service."""
# Configure mock
mock_service.return_value = "mocked_response"
# Test function that uses service
result = function_that_calls_service()
# Verify
assert result == "expected"
mock_service.assert_called_once()
Fixture-Based Mocks
@pytest.fixture
def mock_database():
"""Mock database connection."""
db = Mock()
db.query.return_value = [{"id": 1, "name": "test"}]
return db
def test_database_query(mock_database):
"""Test database query."""
result = get_data(mock_database)
assert len(result) == 1
mock_database.query.assert_called()
Integration Test Patterns
API Integration Testing
def test_api_endpoint_integration(client):
"""Test API endpoint with real client."""
# Arrange
payload = {"data": "test"}
# Act
response = client.post("/api/endpoint", json=payload)
# Assert
assert response.status_code == 200
assert response.json()["status"] == "success"
Database Integration Testing
def test_database_integration(db_session):
"""Test database operations."""
# Arrange
record = Model(name="test", value=123)
# Act
db_session.add(record)
db_session.commit()
# Assert
result = db_session.query(Model).filter_by(name="test").first()
assert result is not None
assert result.value == 123
Coverage Considerations
Testing Requirements
- Aim for 80%+ test coverage
- Test all public functions and methods
- Test edge cases and boundary conditions
- Test error handling paths
- Test integration points
Coverage Tools
# Python with pytest-cov
pytest --cov=src --cov-report=html
# JavaScript with Jest
jest --coverage
# View coverage report
open htmlcov/index.html # Python
open coverage/lcov-report/index.html # JavaScript
Best Practices
Test Naming
- Use descriptive names:
test_function_condition_expected - Example:
test_process_data_invalid_input_raises_error
Test Organization
- One test file per source file
- Group related tests in classes
- Use fixtures for common setup
Test Independence
- Tests should not depend on each other
- Each test should set up its own data
- Clean up resources after tests
Test Readability
- Clear test descriptions
- Simple, focused test cases
- Readable assertions
Mock Judiciously
- Mock external dependencies
- Test real code paths when possible
- Verify mock interactions
Notes
- Guidance Only: This skill provides templates and guidance. It does not automatically generate test files.
- Language Support: Primary support for Python (pytest) and TypeScript/JavaScript (Jest).
- Customization: Templates should be adapted to specific project needs.
- Best Practices: Follow project-specific testing conventions and standards.
Used When
- Starting test implementation for a new module
- Need quick test structure setup
- Learning test patterns for the project
- Ensuring consistent test organization
- Setting up complex fixtures or mocks
- Creating integration test scaffolding