Claude Code Plugins

Community-maintained marketplace

Feedback

architectural-forensics

@mattnigh/skills_collection
0
0

Master protocol for deconstructing agent frameworks to inform derivative system architecture. Use when (1) analyzing an agent framework's codebase comprehensively, (2) comparing multiple frameworks to select best practices, (3) designing a new agent system based on prior art, (4) documenting architectural decisions with evidence, or (5) conducting technical due diligence on AI agent implementations. This skill orchestrates sub-skills for data substrate, execution engine, cognitive architecture, and synthesis phases.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name architectural-forensics
description Master protocol for deconstructing agent frameworks to inform derivative system architecture. Use when (1) analyzing an agent framework's codebase comprehensively, (2) comparing multiple frameworks to select best practices, (3) designing a new agent system based on prior art, (4) documenting architectural decisions with evidence, or (5) conducting technical due diligence on AI agent implementations. This skill orchestrates sub-skills for data substrate, execution engine, cognitive architecture, and synthesis phases.

Architectural Forensics Protocol

Deconstruct agent frameworks to inform derivative system architecture.

Mission

Distinguish between software engineering decisions (how it runs) and cognitive architecture decisions (how it thinks) to extract reusable patterns for new systems.

Quick Start

# 1. Map the codebase (uses codebase-mapping skill's script)
python .claude/skills/codebase-mapping/scripts/map_codebase.py /path/to/framework --output codebase-map.json

# 2. Run analysis via the command
/analyze-frameworks

Protocol Phases

Phase 1: Engineering Chassis

Analyze the software substrate. See references/phase1-engineering.md for detailed guidance.

Analysis Focus Files Output
Data Substrate types.py, schema.py, state.py Typing strategy, mutation patterns
Execution Engine runner.py, executor.py, agent.py Async model, control flow topology
Component Model base_*.py, interfaces.py Abstraction depth, DI patterns
Resilience executor.py, try/except blocks Error propagation, sandboxing

Phase 2: Cognitive Architecture

Extract agent "business logic". See references/phase2-cognitive.md for detailed guidance.

Analysis Focus Files Output
Control Loop agent.py, loop.py Reasoning pattern, step function
Memory memory.py, context.py Context assembly, eviction policies
Tool Interface tool.py, functions.py Schema generation, error feedback
Multi-Agent orchestrator.py, router.py Coordination model, state sharing

Phase 3: Synthesis

Generate actionable outputs:

  1. Best-of-Breed Matrix → Framework comparison table
  2. Anti-Pattern Catalog → "Do Not Repeat" list
  3. Reference Architecture → New framework specification

Execution Workflow

┌─────────────────────────────────────────────────────────┐
│                    For Each Framework                    │
├─────────────────────────────────────────────────────────┤
│  1. codebase-mapping                                    │
│       ↓                                                 │
│  2. Phase 1 Analysis (parallel)                         │
│     ├── data-substrate-analysis                         │
│     ├── execution-engine-analysis                       │
│     ├── component-model-analysis                        │
│     └── resilience-analysis                             │
│       ↓                                                 │
│  3. Phase 2 Analysis (parallel)                         │
│     ├── control-loop-extraction                         │
│     ├── memory-orchestration                            │
│     ├── tool-interface-analysis                         │
│     └── multi-agent-analysis (if applicable)            │
└─────────────────────────────────────────────────────────┘
        ↓
┌─────────────────────────────────────────────────────────┐
│                      Synthesis                           │
├─────────────────────────────────────────────────────────┤
│  4. comparative-matrix                                   │
│  5. antipattern-catalog                                  │
│  6. architecture-synthesis                               │
└─────────────────────────────────────────────────────────┘

Quick Analysis (Single Framework)

For rapid assessment, run the minimal path:

codebase-mapping → execution-engine-analysis → control-loop-extraction → tool-interface-analysis

Output Directory Structure

forensics-output/                    # Working/intermediate files
├── .state/
│   ├── manifest.json
│   └── {framework}.state.json
└── frameworks/
    └── {framework}/
        ├── codebase-map.json
        ├── phase1/*.md
        └── phase2/*.md

reports/                             # Final deliverables
├── frameworks/
│   └── {framework}.md               # Framework summary
└── synthesis/
    ├── comparison-matrix.md
    ├── antipatterns.md
    ├── reference-architecture.md
    └── executive-summary.md

State Management & Resumption

The protocol is designed to be stateful and resumable.

  • Idempotency: The Orchestrator tracks progress in manifest.json and will skip frameworks marked as completed.
  • Clean Slate Resumption: If a run is interrupted, frameworks marked as in_progress are considered "stale". Use python scripts/state_manager.py reset-running to move them back to pending and delete their partial output directories, ensuring a clean restart for those items.

Agent Orchestration

This skill uses a 4-tier hierarchy of specialized agents for context efficiency:

Orchestrator
    │
    └── Framework Agents (parallel, one per framework)
            │
            └── Skill Agents (parallel, one per skill) [COORDINATORS]
                    │
                    └── Reader Agents (parallel, one per file cluster) [EXTRACTORS]
                            │
                            └── Synthesis Agent (cross-framework synthesis)

Agent Roles

Agent Context Budget Reads Produces
Orchestrator ~10K State files Coordination decisions
Framework Agent ~50K Skill outputs Framework summary report
Skill Agent ~25K Cluster extracts Skill analysis report
Reader Agent ~20K 1-5 source files JSON extract (~2K)
Synthesis Agent ~40K All framework reports Comparison matrix, architecture spec

Key Innovation: Cluster-Based Reading

Reader Agents read file clusters (1-5 related files) rather than individual files:

  • Clusters are grouped by relationship: hierarchy, module cohort, type+usage, interface+impl
  • Cross-file patterns (inheritance, imports, shared state) are captured in the extract
  • This enables understanding architectural patterns that span multiple files

See:

  • references/orchestrator-agent.md — Top-level coordination
  • references/framework-agent.md — Per-framework analysis coordination
  • references/skill-agent.md — Skill coordination and cluster assignment
  • references/reader-agent.md — File cluster extraction
  • references/synthesis-agent.md — Cross-framework synthesis

Sub-Skill Reference

Skill Purpose Key Outputs
codebase-mapping Repository structure File tree, dependencies, entry points
data-substrate-analysis Type system Typing strategy, serialization
execution-engine-analysis Control flow Async model, event architecture
component-model-analysis Extensibility Abstraction patterns, DI
resilience-analysis Error handling Error propagation, sandboxing
control-loop-extraction Reasoning loop Pattern classification, step function
memory-orchestration Context management Assembly, eviction, tiers
tool-interface-analysis Tool system Schema gen, error feedback
multi-agent-analysis Coordination Handoffs, state sharing
comparative-matrix Comparison Decision tables
antipattern-catalog Tech debt Do-not-repeat list
architecture-synthesis New design Reference spec