| name | jn |
| description | Use JN for data transformation and ETL. Read data with 'jn cat', filter with 'jn filter', write with 'jn put'. Convert between CSV/JSON/Excel/YAML formats. Stream data through Unix pipes. Integrate with VisiData for visual exploration. Use when working with data files, format conversion, filtering data, or ETL pipelines. |
| allowed-tools | Bash, Read |
JN Data Pipeline Tool
JN is a command-line ETL tool that uses NDJSON (newline-delimited JSON) as a universal data format. Chain commands with Unix pipes to build data pipelines.
Core Concept
All JN commands communicate via NDJSON:
{"name": "Alice", "age": 30}
{"name": "Bob", "age": 25}
One JSON object per line = streamable, memory-efficient data processing.
Four Essential Commands
1. jn cat - Read Data
Read any data source, output NDJSON:
# Basic files
jn cat data.csv # CSV → NDJSON
jn cat data.json # JSON → NDJSON
jn cat data.xlsx # Excel → NDJSON
jn cat data.yaml # YAML → NDJSON
# Force specific format
jn cat data.txt~csv # Treat .txt as CSV
jn cat data.log~json # Treat .log as JSON
# Format with parameters
jn cat "data.csv~csv?delimiter=;" # Semicolon-delimited
jn cat "data.csv?limit=100" # Only read first 100 rows
# Read from stdin
cat data.csv | jn cat "-~csv" # Pipe stdin as CSV
Filtering at read time:
# Filter during cat (applied AFTER reading)
jn cat "data.csv?city=NYC" # Filter: city equals NYC
jn cat "data.csv?city=NYC&city=LA" # OR logic: NYC or LA
jn cat "data.csv?city=NYC&age>25" # AND logic: NYC and age>25
jn cat "data.csv?limit=100&city=NYC" # Config + filter
2. jn filter - Transform Data
Filter/transform NDJSON using jq expressions:
# Simple filters
jn cat data.csv | jn filter '.age > 25'
jn cat data.csv | jn filter '.status == "active"'
jn cat data.csv | jn filter '.price < 100'
# Select specific fields
jn cat data.csv | jn filter '{name, email}'
jn cat data.csv | jn filter '{name, age, city: .location.city}'
# Transform values
jn cat data.csv | jn filter '.price = .price * 1.1'
jn cat data.csv | jn filter '.name = .name | ascii_upcase'
# Combine conditions (AND)
jn cat data.csv | jn filter '.age > 25 and .city == "NYC"'
# Combine conditions (OR)
jn cat data.csv | jn filter '.city == "NYC" or .city == "LA"'
# Select records
jn cat data.csv | jn filter 'select(.active)'
jn cat data.csv | jn filter 'select(.price > 100)'
Aggregation with slurp mode:
# Count total records
jn cat data.csv | jn filter -s 'length'
# Group and count
jn cat data.csv | jn filter -s 'group_by(.status) | map({status: .[0].status, count: length})'
# Sort all data
jn cat data.csv | jn filter -s 'sort_by(.age)'
# Get unique values
jn cat data.csv | jn filter -s 'unique_by(.email)'
⚠️ Warning: Slurp mode (-s) loads all data into memory - use only when needed for aggregations.
3. jn put - Write Data
Write NDJSON to any format:
# Basic output
jn cat data.csv | jn put output.json # NDJSON → JSON
jn cat data.json | jn put output.csv # JSON → CSV
jn cat data.csv | jn put output.xlsx # CSV → Excel
jn cat data.json | jn put output.yaml # JSON → YAML
# Force format
jn cat data.csv | jn put output.txt~json # Force JSON format
# Format with parameters
jn cat data.json | jn put "output.json?indent=4" # Pretty JSON
jn cat data.json | jn put "output.csv?delimiter=|" # Pipe-delimited
# Output to stdout (need -- before -)
jn cat data.json | jn put -- "-" # NDJSON to stdout
jn cat data.json | jn put -- "-~json" # JSON array to stdout
jn cat data.json | jn put -- "-~json?indent=2" # Pretty JSON to stdout
4. jn table - Display as Table
Render NDJSON as a formatted table for human viewing:
# Basic table (grid format)
jn cat data.csv | jn table
# Different formats
jn cat data.csv | jn table -f github # GitHub markdown
jn cat data.csv | jn table -f simple # Simple format
jn cat data.csv | jn table -f fancy_grid # Fancy Unicode
jn cat data.csv | jn table -f markdown # Markdown
jn cat data.csv | jn table -f html # HTML table
# With options
jn cat data.csv | jn table --index # Show row numbers
jn cat data.csv | jn table -w 40 # Max column width 40
jn cat data.csv | jn table --no-header # Hide header
# Pipeline integration
jn cat data.csv | jn filter '.active' | jn table
jn cat data.csv | jn head -n 10 | jn table -f github
⚠️ Important: jn table output is for humans only - cannot be piped to other jn commands.
Common Workflows
Format Conversion
# CSV to JSON
jn cat input.csv | jn put output.json
# Excel to CSV
jn cat input.xlsx | jn put output.csv
# JSON to YAML
jn cat input.json | jn put output.yaml
# Multiple conversions
jn cat input.xlsx | jn put output.json
jn cat output.json | jn put output.yaml
Filter and Transform
# Filter rows, write result
jn cat sales.csv | jn filter '.amount > 1000' | jn put high_value.json
# Select specific columns
jn cat users.csv | jn filter '{name, email}' | jn put contacts.csv
# Transform and save
jn cat products.csv | jn filter '.price = .price * 1.1' | jn put updated.csv
# Multi-stage pipeline
jn cat data.csv | \
jn filter '.status == "active"' | \
jn filter '{id, name, email}' | \
jn put active_users.json
Preview Data
# View first few records
jn cat data.csv | jn head -n 5
# Preview as table
jn cat data.csv | jn head -n 10 | jn table
jn cat data.csv | jn head -n 10 | jn table -f github
# Check last records
jn cat data.csv | jn tail -n 5
# Quick data inspection
jn cat data.json | jn filter 'keys' | jn head -n 1 # Show field names
jn cat data.csv | jn head -n 3 | jn table # Preview with nice formatting
Data Analysis
# Count records
jn cat data.csv | jn filter -s 'length'
# Count by status
jn cat data.csv | jn filter -s 'group_by(.status) | map({status: .[0].status, count: length})' | jn table
# Find unique values
jn cat data.csv | jn filter -s 'map(.city) | unique' | jn put cities.json
# Get statistics
jn cat sales.csv | jn filter -s 'map(.amount) | {total: add, avg: (add / length), max: max, min: min}'
# Display summary as table
jn cat data.csv | jn filter -s 'group_by(.category) | map({category: .[0].category, count: length})' | jn table -f github
VisiData Integration
JN has built-in VisiData integration for visual data exploration.
Using jn vd
# View NDJSON in VisiData
jn cat data.csv | jn vd
# View source directly
jn vd data.json
jn vd data.csv
jn vd https://api.com/data~json
# Pre-filter before viewing
jn vd data.csv --filter '.age > 30'
# Preview large files
jn head -n 1000 huge_file.csv | jn vd
⚠️ Important: When using jn vd programmatically, it requires tmux (see visidata skill for details).
Interactive VisiData with tmux
For programmatic control of VisiData through JN:
SOCKET_DIR=${TMPDIR:-/tmp}/claude-tmux-sockets
mkdir -p "$SOCKET_DIR"
SOCKET="$SOCKET_DIR/claude.sock"
SESSION=claude-jn-vd
# Launch VisiData via JN in tmux
tmux -S "$SOCKET" new -d -s "$SESSION"
jn cat data.csv | jn put /tmp/explore.ndjson
tmux -S "$SOCKET" send-keys -t "$SESSION":0.0 -- "jn vd /tmp/explore.ndjson" Enter
echo "VisiData running. Monitor with:"
echo " tmux -S \"$SOCKET\" attach -t $SESSION"
echo ""
echo "For VisiData commands and usage, see the 'visidata' skill"
For full VisiData capabilities, invoke the visidata skill rather than duplicating documentation here.
Explore → Filter → Save Workflow
# 1. Export data for exploration
jn cat large_dataset.csv | jn put /tmp/explore.csv
# 2. Open in VisiData (see visidata skill for interactive usage)
jn vd /tmp/explore.csv
# User explores data, identifies filter criteria
# 3. Apply filters in JN based on insights
jn cat large_dataset.csv | jn filter '.category == "electronics" and .price > 100' | jn put filtered.json
# 4. Verify with VisiData
jn vd filtered.json
Helper Commands
jn head / jn tail
# First N records (default 10)
jn cat data.csv | jn head -n 10
jn head data.csv # Can also take input directly
# Last N records (default 10)
jn cat data.csv | jn tail -n 10
# Combine with other operations
jn cat data.csv | jn filter '.age > 25' | jn head -n 5
# Preview with table
jn head data.csv | jn table
jn analyze
# Get schema and statistics
jn cat data.csv | jn analyze
# Analyze filtered data
jn cat data.csv | jn filter '.status == "active"' | jn analyze
Tips and Best Practices
1. Use Pipes for Complex Workflows
# Multi-stage processing
jn cat raw.csv | \
jn filter '.status == "active"' | \
jn filter '{id, name, email, created: .created_at}' | \
jn filter 'select(.email != null)' | \
jn put clean.json
2. Preview Before Writing
# Check output first
jn cat data.csv | jn filter '.age > 25' | jn head -n 5 | jn table
# Then save
jn cat data.csv | jn filter '.age > 25' | jn put filtered.csv
3. Use Query Parameters for Config
# Better than format override
jn cat "data.csv?delimiter=;,limit=1000"
# Combine config and filtering
jn cat "data.csv?limit=1000&status=active"
4. Temporary Files for Checkpoints
# Stage 1: Initial cleaning
jn cat raw.csv | jn filter 'select(.email != null)' | jn put /tmp/stage1.ndjson
# Stage 2: Further processing
jn cat /tmp/stage1.ndjson | jn filter '.age > 18' | jn put /tmp/stage2.ndjson
# Stage 3: Final output
jn cat /tmp/stage2.ndjson | jn filter '{name, email}' | jn put final.csv
5. Use VisiData for Visual Validation
# Process data
jn cat input.csv | jn filter '.price > 100' | jn put filtered.json
# Visually verify with VisiData
jn vd filtered.json
6. Avoid Slurp Unless Necessary
# ❌ Bad - loads everything into memory
jn cat huge.csv | jn filter -s 'sort_by(.date)'
# ✅ Good - processes row by row
jn cat huge.csv | jn filter 'select(.date > "2024-01-01")'
# ✅ Slurp only when needed for aggregation
jn cat small.csv | jn filter -s 'group_by(.category) | map({category: .[0].category, count: length})'
Common Patterns
Pattern: CSV Cleanup
# Remove nulls, select columns, save
jn cat messy.csv | \
jn filter 'select(.email != null and .name != "")' | \
jn filter '{name, email, phone}' | \
jn put clean.csv
Pattern: Data Enrichment
# Add computed fields
jn cat orders.csv | \
jn filter '.total = (.price * .quantity)' | \
jn filter '.tax = (.total * 0.08)' | \
jn put enriched.csv
Pattern: Multi-Format Pipeline
# Excel → filter → JSON → inspect → CSV
jn cat input.xlsx | \
jn filter '.department == "sales"' | \
jn put /tmp/sales.json
jn vd /tmp/sales.json # Visual inspection
jn cat /tmp/sales.json | jn put final.csv
Pattern: API to Database ETL
# Fetch from API (simulated with file), transform, save for import
jn cat api_response.json | \
jn filter '.items[]' | \
jn filter '{id, name, email, created_at}' | \
jn filter 'select(.email != null)' | \
jn put import_ready.csv
Pattern: Quick Data Summary
# Get overview of data
echo "=== Record count ==="
jn cat data.csv | jn filter -s 'length'
echo -e "\n=== Field names ==="
jn cat data.csv | jn head -n 1 | jn filter 'keys'
echo -e "\n=== Sample records ==="
jn cat data.csv | jn head -n 5 | jn table
Troubleshooting
Issue: "No plugin found"
# Check file extension
ls -la data.csv
# Force format explicitly
jn cat data.txt~csv
Issue: "JSON parsing error"
# Verify input is valid NDJSON
jn cat data.json | jn head -n 1
# Check for JSON arrays vs NDJSON
# JN outputs NDJSON, not JSON arrays
Issue: Memory usage too high
# Avoid slurp mode for large files
# ❌ Don't do this with huge files:
jn cat huge.csv | jn filter -s 'sort_by(.date)'
# ✅ Process in streaming fashion:
jn cat huge.csv | jn filter 'select(.date > "2024-01-01")'
Issue: VisiData not opening
# Check VisiData installation
vd --version
# Install if needed
uv tool install visidata
# For programmatic use, use tmux (see visidata skill)
Quick Reference
| Task | Command |
|---|---|
| Read CSV | jn cat data.csv |
| Read JSON | jn cat data.json |
| Force format | jn cat data.txt~csv |
| Filter | jn filter '.age > 25' |
| Select fields | jn filter '{name, email}' |
| Write JSON | jn put output.json |
| Write CSV | jn put output.csv |
| Pretty print | jn put -- "-~json?indent=2" |
| Table view | jn table |
| GitHub table | jn table -f github |
| First 10 | jn head -n 10 |
| Last 10 | jn tail -n 10 |
| Count | jn filter -s 'length' |
| View in VisiData | jn vd |
Examples
Example 1: Convert and filter
jn cat sales.xlsx | jn filter '.amount > 1000' | jn put high_value.csv
Example 2: Select columns
jn cat users.csv | jn filter '{name, email, city}' | jn put contacts.json
Example 3: Multiple filters
jn cat data.csv | \
jn filter '.status == "active"' | \
jn filter '.age > 18' | \
jn put adults.csv
Example 4: Preview with VisiData
jn cat data.csv | jn filter '.price > 100' | jn vd
Example 5: Aggregation
jn cat orders.csv | \
jn filter -s 'group_by(.product) | map({product: .[0].product, total: map(.amount) | add})' | \
jn put summary.json
Integration with Other Skills
- VisiData skill: For detailed VisiData usage, interactive exploration, and tmux integration
- tmux skill: For running VisiData or other interactive tools programmatically
When you need to explore data visually, use jn vd and refer to the visidata skill for full capabilities.