| name | Backend Python Standards |
| description | Apply Python tooling standards including uv package management, pytest testing, ruff/mypy code quality, one-line docstrings, and self-documenting code practices. Use this skill when working with Python backend code, managing dependencies, running tests, or ensuring code quality. Apply when installing packages, writing tests, formatting code, type checking, adding docstrings, organizing imports, or deciding whether to create new files vs. extending existing ones. Use for any Python development task requiring adherence to tooling standards and best practices. |
Backend Python Standards
Core Rule: Use uv for all package operations, pytest for testing, ruff for formatting/linting. Write self-documenting code with minimal comments.
When to use this skill
- When installing or managing Python packages and dependencies
- When writing or running unit tests, integration tests, or test suites
- When formatting Python code or fixing linting issues
- When adding type hints or running type checking
- When writing function/method docstrings
- When organizing imports in Python files
- When deciding whether to create a new Python file or extend existing ones
- When setting up code quality checks (linting, formatting, type checking)
- When running coverage reports or analyzing test results
- When ensuring code follows Python best practices and tooling standards
This Skill provides Claude Code with specific guidance on how to adhere to Python tooling standards and best practices for backend development.
Package Management - uv Only
MANDATORY: Use uv for all Python package operations. Never use pip directly.
# Installing packages
uv pip install package-name
uv pip install -r requirements.txt
# Package information
uv pip list
uv pip show package-name
# Running Python scripts/modules
uv run python script.py
uv run pytest
Why uv: Faster dependency resolution, better lock file management, project standard for consistency.
If you catch yourself typing pip: Stop and use uv pip instead.
Testing with pytest
Run tests using uv run pytest:
uv run pytest # All tests
uv run pytest -m unit # Unit tests only
uv run pytest -m integration # Integration tests only
uv run pytest tests/unit/test_module.py # Specific file
uv run pytest tests/unit/test_module.py::test_name # Specific test
uv run pytest -v # Verbose output
uv run pytest -s # Show print statements
uv run pytest --cov=src --cov-report=term-missing # Coverage report
uv run pytest --cov-fail-under=80 # Enforce 80% coverage
Test markers: Use @pytest.mark.unit and @pytest.mark.integration to categorize tests.
Code Quality Tools
Ruff (Linting & Formatting):
ruff check . # Check for issues
ruff check . --fix # Auto-fix issues
ruff format . # Format all code
Type Checking:
mypy src --strict # Strict type checking with mypy
basedpyright src # Alternative type checker
Run quality checks before marking work complete. Use getDiagnostics tool to verify no errors.
Code Style
Docstrings
Use concise one-line docstrings for most functions:
def calculate_discount(price: float, rate: float) -> float:
"""Calculate discounted price by applying rate."""
return price * (1 - rate)
Multi-line docstrings only for complex functions:
def process_payment(order_id: str, payment_method: str) -> PaymentResult:
"""
Process payment for order using specified method.
Validates payment method, charges customer, updates order status,
and sends confirmation email. Rolls back on any failure.
"""
# Implementation
Don't document obvious behavior:
# BAD - docstring adds no value
def get_user_email(user_id: str) -> str:
"""Get the email address for a user by their ID."""
# GOOD - name is self-explanatory
def get_user_email(user_id: str) -> str:
return db.query(User).filter_by(id=user_id).first().email
Comments
Write self-documenting code. Minimize inline comments.
Use clear names instead of comments:
# BAD - comment explains unclear code
# Check if user has permission
if u.r == 'admin' or u.r == 'moderator':
# GOOD - code explains itself
if user.is_admin() or user.is_moderator():
Use comments only for:
- Complex algorithms requiring explanation
- Non-obvious business logic or domain rules
- Workarounds for external library bugs (include issue link)
- Performance optimizations that sacrifice clarity
Import Organization
Order: Standard library → Third-party → Local application
# Standard library
import os
from datetime import datetime
# Third-party
import pytest
from sqlalchemy import Column, Integer
# Local application
from app.models import User
from app.services import EmailService
Ruff automatically organizes imports. Run ruff check . --fix to sort.
Remove unused imports immediately. Use getDiagnostics to identify them.
Type Hints
Add type hints to all function signatures:
# Required
def process_order(order_id: str, user_id: int) -> Order:
pass
# Not required for simple private methods
def _format_price(amount):
return f"${amount:.2f}"
Use modern type syntax (Python 3.10+):
# Good
def get_users(ids: list[int]) -> list[User]:
pass
# Avoid (old style)
from typing import List
def get_users(ids: List[int]) -> List[User]:
pass
File Organization
Prefer editing existing files over creating new ones.
Before creating a new Python file, ask:
- Can this fit in an existing module?
- Is there a related file to extend?
- Does this truly need to be separate?
Benefits: Reduces file sprawl, maintains coherent structure, easier navigation.
When to create new files:
- New model/entity with distinct responsibility
- New service layer for separate domain
- Test file for new module
- Clear architectural boundary
Common Patterns
Avoid bare except:
# BAD
try:
process()
except:
pass
# GOOD
try:
process()
except ValueError as e:
logger.error(f"Invalid value: {e}")
raise
Use context managers for resources:
# GOOD
with open(file_path) as f:
data = f.read()
# GOOD
with db.session() as session:
user = session.query(User).first()
Prefer pathlib over os.path:
# GOOD
from pathlib import Path
config_path = Path(__file__).parent / "config.yaml"
# Avoid
import os
config_path = os.path.join(os.path.dirname(__file__), "config.yaml")
Verification Checklist
Before marking Python work complete:
- Used
uvfor all package operations (notpip) - All tests pass:
uv run pytest - Code formatted:
ruff format . - No linting issues:
ruff check . - Type checking passes:
mypy src --strictorbasedpyright src - No unused imports (check with
getDiagnostics) - Docstrings added to public functions
- Type hints on function signatures
- Coverage ≥ 80%:
uv run pytest --cov=src --cov-fail-under=80
Quick Reference
| Task | Command |
|---|---|
| Install package | uv pip install package-name |
| Run tests | uv run pytest |
| Run with coverage | uv run pytest --cov=src |
| Format code | ruff format . |
| Fix linting | ruff check . --fix |
| Type check (mypy) | mypy src --strict |
| Type check (pyright) | basedpyright src |
| Run Python script | uv run python script.py |