Claude Code Plugins

Community-maintained marketplace

Feedback

AI governance and responsible AI planning including EU AI Act classification, NIST AI RMF, and AI ethics frameworks

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ai-governance
description AI governance and responsible AI planning including EU AI Act classification, NIST AI RMF, and AI ethics frameworks
allowed-tools Read, Glob, Grep, Write, Edit, Task

AI Governance Planning

Comprehensive guidance for AI governance, regulatory compliance, and responsible AI practices before development begins.

When to Use This Skill

  • Building AI/ML systems that may fall under EU AI Act
  • Implementing NIST AI Risk Management Framework
  • Establishing responsible AI practices and governance
  • Conducting AI risk classification and impact assessments
  • Creating AI documentation and transparency reports

EU AI Act Overview

Risk-Based Classification

The EU AI Act categorizes AI systems by risk level:

┌─────────────────────────────────────────────────────┐
│ UNACCEPTABLE RISK (Prohibited)                      │
│ • Social scoring by governments                     │
│ • Subliminal manipulation                           │
│ • Exploitation of vulnerabilities                   │
│ • Real-time biometric ID in public (exceptions)     │
├─────────────────────────────────────────────────────┤
│ HIGH RISK (Strict Requirements)                     │
│ • Biometric identification                          │
│ • Critical infrastructure management                │
│ • Education/vocational training access              │
│ • Employment, worker management, recruitment        │
│ • Essential services access (credit, insurance)     │
│ • Law enforcement                                   │
│ • Migration, asylum, border control                 │
│ • Justice and democratic processes                  │
├─────────────────────────────────────────────────────┤
│ LIMITED RISK (Transparency Obligations)             │
│ • Chatbots (must disclose AI interaction)           │
│ • Emotion recognition systems                       │
│ • Biometric categorization                          │
│ • Deepfakes (must label as generated)               │
├─────────────────────────────────────────────────────┤
│ MINIMAL RISK (No Specific Requirements)             │
│ • AI-enabled video games                            │
│ • Spam filters                                      │
│ • Inventory management                              │
└─────────────────────────────────────────────────────┘

High-Risk AI Requirements

Requirement Description Implementation
Risk Management Continuous risk management system Risk assessment process
Data Governance Training data quality and governance Data documentation
Technical Documentation Detailed system documentation System spec + model cards
Record Keeping Automatic logging of events Audit trail
Transparency Clear instructions for users User documentation
Human Oversight Ability for human intervention HITL mechanisms
Accuracy, Robustness, Cybersecurity Appropriate performance levels Testing + monitoring

Risk Classification Decision Tree

public class EuAiActClassifier
{
    public AiRiskCategory Classify(AiSystemDescription system)
    {
        // Check for prohibited practices first
        if (IsProhibited(system))
            return AiRiskCategory.Unacceptable;

        // Check Annex III high-risk categories
        if (IsHighRiskCategory(system))
            return AiRiskCategory.High;

        // Check Annex I product safety legislation
        if (RequiresProductConformity(system))
            return AiRiskCategory.High;

        // Check for transparency obligations
        if (RequiresTransparency(system))
            return AiRiskCategory.Limited;

        return AiRiskCategory.Minimal;
    }

    private bool IsProhibited(AiSystemDescription system)
    {
        return system.UseCases.Any(uc =>
            uc.Type == UseCaseType.SocialScoring ||
            uc.Type == UseCaseType.SubliminalManipulation ||
            uc.Type == UseCaseType.VulnerabilityExploitation ||
            (uc.Type == UseCaseType.RealTimeBiometricId &&
             uc.Context == Context.PublicSpace &&
             !uc.HasLawEnforcementException));
    }

    private bool IsHighRiskCategory(AiSystemDescription system)
    {
        var highRiskCategories = new[]
        {
            Domain.BiometricIdentification,
            Domain.CriticalInfrastructure,
            Domain.EducationAccess,
            Domain.Employment,
            Domain.EssentialServices,
            Domain.LawEnforcement,
            Domain.MigrationAsylum,
            Domain.JusticeProcesses
        };

        return highRiskCategories.Contains(system.Domain);
    }
}

public enum AiRiskCategory
{
    Unacceptable,
    High,
    Limited,
    Minimal
}

NIST AI Risk Management Framework

The Four Functions

┌─────────────────────────────────────────────────────────────┐
│                         GOVERN                               │
│  Culture, policies, accountability structures               │
│  ↓                                                          │
├─────────────────────────────────────────────────────────────┤
│        MAP              MEASURE           MANAGE            │
│  Context & risks →  Assess risks →   Prioritize &          │
│  identification     & impacts        mitigate               │
└─────────────────────────────────────────────────────────────┘

Govern Function

Establish AI governance structures:

## AI Governance Structure

### Roles and Responsibilities
| Role | Responsibilities |
|------|------------------|
| AI Governance Board | Strategic oversight, policy approval |
| AI Ethics Officer | Ethics review, bias assessment |
| AI Risk Manager | Risk identification, mitigation tracking |
| Model Owner | Lifecycle management, performance |
| Technical Lead | Implementation, testing, monitoring |

### Policies Required
- [ ] AI Development Policy
- [ ] Model Risk Management Policy
- [ ] AI Ethics Guidelines
- [ ] Data Quality Standards
- [ ] Human Oversight Requirements
- [ ] Incident Response for AI Failures

Map Function

Understand context and identify risks:

public class AiContextMapping
{
    public record AiSystemContext
    {
        public required string SystemName { get; init; }
        public required string Purpose { get; init; }
        public required List<string> Stakeholders { get; init; }
        public required List<string> ImpactedGroups { get; init; }
        public required string DecisionType { get; init; } // Augment vs Automate
        public required bool InvolvesVulnerablePopulations { get; init; }
        public required List<string> PotentialHarms { get; init; }
        public required List<string> PotentialBenefits { get; init; }
        public required List<string> LegalConstraints { get; init; }
    }

    public ContextAssessment Assess(AiSystemContext context)
    {
        var risks = new List<IdentifiedRisk>();

        // Assess stakeholder impacts
        foreach (var group in context.ImpactedGroups)
        {
            risks.Add(new IdentifiedRisk
            {
                Category = "Stakeholder Impact",
                Description = $"Potential impact on {group}",
                Severity = context.InvolvesVulnerablePopulations
                    ? RiskSeverity.High
                    : RiskSeverity.Medium
            });
        }

        // Assess potential harms
        foreach (var harm in context.PotentialHarms)
        {
            risks.Add(new IdentifiedRisk
            {
                Category = "Potential Harm",
                Description = harm,
                Severity = DetermineHarmSeverity(harm)
            });
        }

        return new ContextAssessment
        {
            Context = context,
            IdentifiedRisks = risks,
            RecommendedMitigations = GenerateMitigations(risks)
        };
    }
}

Measure Function

Assess and analyze AI risks:

## Risk Assessment Framework

### Trustworthiness Characteristics

| Characteristic | Assessment Questions |
|----------------|---------------------|
| **Valid & Reliable** | Does the system perform as intended? Are results consistent? |
| **Safe** | Can the system cause harm? Are safety controls adequate? |
| **Secure & Resilient** | Is the system protected from attacks? Can it recover? |
| **Accountable & Transparent** | Can we explain decisions? Is there clear ownership? |
| **Explainable & Interpretable** | Can users understand outputs? Can we audit decisions? |
| **Privacy-Enhanced** | Is personal data protected? Is data minimization applied? |
| **Fair (Bias Managed)** | Are outcomes equitable? Is bias detected and mitigated? |

### Measurement Metrics

| Metric | Description | Target |
|--------|-------------|--------|
| Accuracy | Correct predictions/total | ≥95% |
| Fairness Gap | Max disparity across groups | ≤5% |
| Explainability | Decisions with explanations | 100% |
| Incident Rate | Failures per 1000 uses | <1 |
| Human Override Rate | Manual interventions | Track |

Manage Function

Prioritize and implement mitigations:

public class AiRiskManagement
{
    public record RiskMitigation
    {
        public required string RiskId { get; init; }
        public required string Risk { get; init; }
        public required RiskSeverity Severity { get; init; }
        public required List<string> Controls { get; init; }
        public required string Owner { get; init; }
        public required DateTimeOffset DueDate { get; init; }
        public required MitigationStatus Status { get; init; }
    }

    public RiskTreatmentPlan CreateTreatmentPlan(
        IEnumerable<IdentifiedRisk> risks)
    {
        var prioritized = risks
            .OrderByDescending(r => r.Severity)
            .ThenByDescending(r => r.Likelihood);

        var plan = new RiskTreatmentPlan();

        foreach (var risk in prioritized)
        {
            var treatment = DetermineTreatment(risk);

            switch (treatment)
            {
                case TreatmentType.Avoid:
                    plan.Avoidances.Add(CreateAvoidanceAction(risk));
                    break;
                case TreatmentType.Mitigate:
                    plan.Mitigations.Add(CreateMitigationPlan(risk));
                    break;
                case TreatmentType.Transfer:
                    plan.Transfers.Add(CreateTransferPlan(risk));
                    break;
                case TreatmentType.Accept:
                    plan.Acceptances.Add(CreateAcceptanceRecord(risk));
                    break;
            }
        }

        return plan;
    }
}

Responsible AI Principles

Core Principles

Principle Description Implementation
Fairness Equitable treatment, non-discrimination Bias testing, fairness metrics
Transparency Clear about AI use and limitations Disclosure, explanations
Accountability Clear ownership and responsibility Governance, audit trails
Privacy Protect personal data Data minimization, consent
Safety Prevent harm Testing, guardrails, monitoring
Human Control Meaningful human oversight HITL, override capabilities

Model Documentation (Model Card)

# Model Card: [Model Name]

## Model Details
- **Developer**: [Organization]
- **Version**: [X.Y.Z]
- **Type**: [Classification/Regression/Generation/etc.]
- **Framework**: [PyTorch/TensorFlow/etc.]
- **License**: [License]

## Intended Use
- **Primary Use Cases**: [List]
- **Users**: [Target users]
- **Out-of-Scope Uses**: [Prohibited or unsupported uses]

## Training Data
- **Dataset**: [Name and source]
- **Size**: [Number of examples]
- **Features**: [Key features used]
- **Preprocessing**: [Steps applied]
- **Known Limitations**: [Data gaps or biases]

## Evaluation
- **Metrics**: [Accuracy, F1, etc.]
- **Test Data**: [Holdout set description]
- **Results**: [Performance numbers]
- **Fairness Evaluation**: [Disaggregated metrics]

## Ethical Considerations
- **Sensitive Use Cases**: [If applicable]
- **Potential Misuse**: [Risks]
- **Mitigations**: [Controls in place]

## Limitations and Recommendations
- **Known Limitations**: [Model weaknesses]
- **Recommendations**: [Best practices for users]

Algorithmic Impact Assessment

## Algorithmic Impact Assessment

### 1. System Description
- **Name**: [System name]
- **Purpose**: [Business objective]
- **Decision Type**: [What decisions it informs/makes]
- **Affected Parties**: [Who is impacted]

### 2. Data Assessment
- **Data Sources**: [Origin of data]
- **Personal Data**: [Types collected]
- **Sensitive Attributes**: [Protected characteristics]
- **Historical Bias Risk**: [Assessment]

### 3. Impact Assessment

#### Positive Impacts
| Impact | Beneficiary | Magnitude |
|--------|-------------|-----------|
| [Impact] | [Group] | [High/Med/Low] |

#### Negative Impacts
| Impact | Affected Group | Magnitude | Mitigation |
|--------|----------------|-----------|------------|
| [Impact] | [Group] | [H/M/L] | [Action] |

### 4. Fairness Assessment
- **Protected Groups Analyzed**: [List]
- **Fairness Metrics Used**: [Demographic parity, etc.]
- **Disparities Found**: [Results]
- **Remediation Plan**: [Actions]

### 5. Human Oversight
- **Oversight Level**: [Full automation / Human-in-the-loop / Human-on-the-loop]
- **Override Mechanism**: [How humans can intervene]
- **Escalation Path**: [When to escalate]

### 6. Monitoring Plan
- **Performance Metrics**: [What to track]
- **Fairness Metrics**: [Ongoing monitoring]
- **Review Frequency**: [Cadence]
- **Trigger Thresholds**: [When to investigate]

### 7. Approval
| Role | Name | Approval | Date |
|------|------|----------|------|
| Model Owner | | [ ] | |
| AI Ethics | | [ ] | |
| Legal | | [ ] | |
| Business | | [ ] | |

AI Governance Checklist

Pre-Development

  • Classify AI system risk level (EU AI Act)
  • Conduct algorithmic impact assessment
  • Identify regulatory requirements
  • Establish governance structure
  • Define success metrics (including fairness)
  • Document intended use and limitations

Development

  • Implement bias testing throughout development
  • Create model documentation (model card)
  • Build explainability features
  • Implement human oversight mechanisms
  • Create audit logging
  • Test with diverse stakeholders

Deployment

  • Final fairness evaluation
  • Transparency disclosures in place
  • Human override mechanisms tested
  • Monitoring dashboards configured
  • Incident response plan ready
  • User documentation complete

Operations

  • Regular bias monitoring
  • Performance drift detection
  • Periodic fairness audits
  • Model retraining governance
  • Incident tracking and response
  • Stakeholder feedback collection

Cross-References

  • Bias Assessment: See ai-ml-planning plugin bias-assessment skill
  • Explainability: See ai-ml-planning plugin explainability-planning skill
  • Data Privacy: gdpr-compliance for data protection
  • Ethics: ethics-review for ethical assessment

Resources