Claude Code Plugins

Community-maintained marketplace

Feedback

ml-inference-optimization

@melodic-software/claude-code-plugins
3
0

ML inference latency optimization, model compression, distillation, caching strategies, and edge deployment patterns. Use when optimizing inference performance, reducing model size, or deploying ML at the edge.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ml-inference-optimization
description ML inference latency optimization, model compression, distillation, caching strategies, and edge deployment patterns. Use when optimizing inference performance, reducing model size, or deploying ML at the edge.
allowed-tools Read, Glob, Grep

ML Inference Optimization

When to Use This Skill

Use this skill when:

  • Optimizing ML inference latency
  • Reducing model size for deployment
  • Implementing model compression techniques
  • Designing inference caching strategies
  • Deploying models at the edge
  • Balancing accuracy vs. latency trade-offs

Keywords: inference optimization, latency, model compression, distillation, pruning, quantization, caching, edge ML, TensorRT, ONNX, model serving, batching, hardware acceleration

Inference Optimization Overview

┌─────────────────────────────────────────────────────────────────────┐
│                 Inference Optimization Stack                        │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  ┌──────────────────────────────────────────────────────────────┐  │
│  │                    Model Level                                │  │
│  │  Distillation │ Pruning │ Quantization │ Architecture Search │  │
│  └──────────────────────────────────────────────────────────────┘  │
│                              │                                      │
│                              ▼                                      │
│  ┌──────────────────────────────────────────────────────────────┐  │
│  │                   Compiler Level                              │  │
│  │  Graph optimization │ Operator fusion │ Memory planning       │  │
│  └──────────────────────────────────────────────────────────────┘  │
│                              │                                      │
│                              ▼                                      │
│  ┌──────────────────────────────────────────────────────────────┐  │
│  │                  Runtime Level                                │  │
│  │  Batching │ Caching │ Async execution │ Multi-threading      │  │
│  └──────────────────────────────────────────────────────────────┘  │
│                              │                                      │
│                              ▼                                      │
│  ┌──────────────────────────────────────────────────────────────┐  │
│  │                  Hardware Level                               │  │
│  │  GPU │ TPU │ NPU │ CPU SIMD │ Custom accelerators            │  │
│  └──────────────────────────────────────────────────────────────┘  │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Model Compression Techniques

Technique Overview

Technique Size Reduction Speed Improvement Accuracy Impact
Quantization 2-4x 2-4x Low (1-2%)
Pruning 2-10x 1-3x Low-Medium
Distillation 3-10x 3-10x Medium
Low-rank factorization 2-5x 1.5-3x Low-Medium
Weight sharing 10-100x Variable Medium-High

Knowledge Distillation

┌─────────────────────────────────────────────────────────────────────┐
│                    Knowledge Distillation                           │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  ┌──────────────┐                                                   │
│  │ Teacher Model│ (Large, accurate, slow)                          │
│  │   GPT-4      │                                                   │
│  └──────────────┘                                                   │
│         │                                                           │
│         ▼ Soft labels (probability distributions)                   │
│  ┌──────────────────────────────────────────────────────────────┐  │
│  │                    Training Process                           │  │
│  │  Loss = α × CrossEntropy(student, hard_labels)               │  │
│  │       + (1-α) × KL_Div(student, teacher_soft_labels)         │  │
│  └──────────────────────────────────────────────────────────────┘  │
│         │                                                           │
│         ▼                                                           │
│  ┌──────────────┐                                                   │
│  │Student Model │ (Small, nearly as accurate, fast)                │
│  │  DistilBERT  │                                                   │
│  └──────────────┘                                                   │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Distillation Types:

Type Description Use Case
Response distillation Match teacher outputs General compression
Feature distillation Match intermediate layers Better transfer
Relation distillation Match sample relationships Structured data
Self-distillation Model teaches itself Regularization

Pruning Strategies

Unstructured Pruning (Weight-level):
Before: [0.1, 0.8, 0.2, 0.9, 0.05, 0.7]
After:  [0.0, 0.8, 0.0, 0.9, 0.0, 0.7]  (50% sparse)
• Flexible, high sparsity possible
• Needs sparse hardware/libraries

Structured Pruning (Channel/Layer-level):
Before: ┌───┬───┬───┬───┐
        │ C1│ C2│ C3│ C4│
        └───┴───┴───┴───┘
After:  ┌───┬───┬───┐
        │ C1│ C3│ C4│  (Removed C2 entirely)
        └───┴───┴───┘
• Works with standard hardware
• Lower compression ratio

Pruning Decision Criteria:

Method Description Effectiveness
Magnitude-based Remove smallest weights Simple, effective
Gradient-based Remove low-gradient weights Better accuracy
Second-order Use Hessian information Best but expensive
Lottery ticket Find winning subnetwork Theoretical insight

Quantization (Detailed)

Precision Hierarchy:

FP32 (32 bits): ████████████████████████████████
FP16 (16 bits): ████████████████
BF16 (16 bits): ████████████████  (different mantissa/exponent)
INT8 (8 bits):  ████████
INT4 (4 bits):  ████
Binary (1 bit): █

Memory and Compute Scale Proportionally

Quantization Approaches:

Approach When Applied Quality Effort
Dynamic quantization Runtime Good Low
Static quantization Post-training with calibration Better Medium
QAT During training Best High

Compiler-Level Optimization

Graph Optimization

Original Graph:
Input → Conv → BatchNorm → ReLU → Conv → BatchNorm → ReLU → Output

Optimized Graph (Operator Fusion):
Input → FusedConvBNReLU → FusedConvBNReLU → Output

Benefits:
• Fewer kernel launches
• Better memory locality
• Reduced memory bandwidth

Common Optimizations

Optimization Description Speedup
Operator fusion Combine sequential ops 1.2-2x
Constant folding Pre-compute constants 1.1-1.5x
Dead code elimination Remove unused ops Variable
Layout optimization Optimize tensor memory layout 1.1-1.3x
Memory planning Optimize buffer allocation 1.1-1.2x

Optimization Frameworks

Framework Vendor Best For
TensorRT NVIDIA NVIDIA GPUs, lowest latency
ONNX Runtime Microsoft Cross-platform, broad support
OpenVINO Intel Intel CPUs/GPUs
Core ML Apple Apple devices
TFLite Google Mobile, embedded
Apache TVM Open source Custom hardware, research

Runtime Optimization

Batching Strategies

No Batching:
Request 1: [Process] → Response 1      10ms
Request 2: [Process] → Response 2      10ms
Request 3: [Process] → Response 3      10ms
Total: 30ms, GPU underutilized

Dynamic Batching:
Requests 1-3: [Wait 5ms] → [Process batch] → Responses
Total: 15ms, 2x throughput

Trade-off: Latency vs. Throughput
• Larger batch: Higher throughput, higher latency
• Smaller batch: Lower latency, lower throughput

Batching Parameters:

Parameter Description Trade-off
batch_size Maximum batch size Throughput vs. latency
max_wait_time Wait time for batch fill Latency vs. efficiency
min_batch_size Minimum before processing Latency predictability

Caching Strategies

┌─────────────────────────────────────────────────────────────────────┐
│                    Inference Caching Layers                         │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  Layer 1: Input Cache                                               │
│  ┌─────────────────────────────────────────────────────────────┐   │
│  │ Cache exact inputs → Return cached outputs                   │   │
│  │ Hit rate: Low (inputs rarely repeat exactly)                 │   │
│  └─────────────────────────────────────────────────────────────┘   │
│                                                                     │
│  Layer 2: Embedding Cache                                           │
│  ┌─────────────────────────────────────────────────────────────┐   │
│  │ Cache computed embeddings for repeated tokens/entities       │   │
│  │ Hit rate: Medium (common tokens repeat)                      │   │
│  └─────────────────────────────────────────────────────────────┘   │
│                                                                     │
│  Layer 3: KV Cache (for transformers)                               │
│  ┌─────────────────────────────────────────────────────────────┐   │
│  │ Cache key-value pairs for attention                          │   │
│  │ Hit rate: High (reuse across tokens in sequence)             │   │
│  └─────────────────────────────────────────────────────────────┘   │
│                                                                     │
│  Layer 4: Result Cache                                              │
│  ┌─────────────────────────────────────────────────────────────┐   │
│  │ Cache semantic equivalents (fuzzy matching)                  │   │
│  │ Hit rate: Variable (depends on query distribution)           │   │
│  └─────────────────────────────────────────────────────────────┘   │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Semantic Caching for LLMs:

Query: "What's the capital of France?"
       ↓
Hash + Embed query
       ↓
Search cache (similarity > threshold)
       ↓
├── Hit: Return cached response
└── Miss: Generate → Cache → Return

Async and Parallel Execution

Sequential:
┌─────┐ ┌─────┐ ┌─────┐
│Prep │→│Model│→│Post │  Total: 30ms
│10ms │ │15ms │ │5ms  │
└─────┘ └─────┘ └─────┘

Pipelined:
Request 1: │Prep│Model│Post│
Request 2:      │Prep│Model│Post│
Request 3:           │Prep│Model│Post│

Throughput: 3x higher
Latency per request: Same

Hardware Acceleration

Hardware Comparison

Hardware Strengths Limitations Best For
GPU (NVIDIA) High parallelism, mature ecosystem Power, cost Training, large batch inference
TPU (Google) Matrix ops, cloud integration Vendor lock-in Google Cloud workloads
NPU (Apple/Qualcomm) Power efficient, on-device Limited models Mobile, edge
CPU Flexible, available Slower for ML Low-batch, CPU-bound
FPGA Customizable, low latency Development complexity Specialized workloads

GPU Optimization

Optimization Description Impact
Tensor Cores Use FP16/INT8 tensor operations 2-8x speedup
CUDA graphs Reduce kernel launch overhead 1.5-2x for small models
Multi-stream Parallel execution Higher throughput
Memory pooling Reduce allocation overhead Lower latency variance

Edge Deployment

Edge Constraints

┌─────────────────────────────────────────────────────────────────────┐
│                      Edge Deployment Constraints                    │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  Resource Constraints:                                              │
│  ├── Memory: 1-4 GB (vs. 64+ GB cloud)                             │
│  ├── Compute: 1-10 TOPS (vs. 100+ TFLOPS cloud)                    │
│  ├── Power: 5-15W (vs. 300W+ cloud)                                │
│  └── Storage: 16-128 GB (vs. TB cloud)                             │
│                                                                     │
│  Operational Constraints:                                           │
│  ├── No network (offline operation)                                 │
│  ├── Variable ambient conditions                                    │
│  ├── Infrequent updates                                            │
│  └── Long deployment lifetime                                       │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Edge Optimization Strategies

Strategy Description Use When
Model selection Use edge-native models (MobileNet, EfficientNet) Accuracy acceptable
Aggressive quantization INT8 or lower Memory/power constrained
On-device distillation Distill to tiny model Extreme constraints
Split inference Edge preprocessing, cloud inference Network available
Model caching Cache results locally Repeated queries

Edge ML Frameworks

Framework Platform Features
TensorFlow Lite Android, iOS, embedded Quantization, delegates
Core ML iOS, macOS Neural Engine optimization
ONNX Runtime Mobile Cross-platform Broad model support
PyTorch Mobile Android, iOS Familiar API
TensorRT NVIDIA Jetson Maximum performance

Latency Profiling

Profiling Methodology

┌─────────────────────────────────────────────────────────────────────┐
│                    Latency Breakdown Analysis                       │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  1. Data Loading:          ████████░░░░░░░░░░  15%                 │
│  2. Preprocessing:         ██████░░░░░░░░░░░░  10%                 │
│  3. Model Inference:       ████████████████░░  60%                 │
│  4. Postprocessing:        ████░░░░░░░░░░░░░░   8%                 │
│  5. Response Serialization:███░░░░░░░░░░░░░░░   7%                 │
│                                                                     │
│  Target: Model inference (60% = biggest optimization opportunity)  │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Profiling Tools

Tool Use For
PyTorch Profiler PyTorch model profiling
TensorBoard TensorFlow visualization
NVIDIA Nsight GPU profiling
Chrome Tracing General timeline visualization
perf CPU profiling

Key Metrics

Metric Description Target
P50 latency Median latency < SLA
P99 latency Tail latency < 2x P50
Throughput Requests/second Meet demand
GPU utilization Compute usage > 80%
Memory bandwidth Memory usage < limit

Optimization Workflow

Systematic Approach

┌─────────────────────────────────────────────────────────────────────┐
│                  Optimization Workflow                              │
├─────────────────────────────────────────────────────────────────────┤
│                                                                     │
│  1. Baseline                                                        │
│     └── Measure current performance (latency, throughput, accuracy) │
│                                                                     │
│  2. Profile                                                         │
│     └── Identify bottlenecks (model, data, system)                  │
│                                                                     │
│  3. Optimize (in order of effort/impact):                           │
│     ├── Hardware: Use right accelerator                             │
│     ├── Compiler: Enable optimizations (TensorRT, ONNX)            │
│     ├── Runtime: Batching, caching, async                          │
│     ├── Model: Quantization, pruning                                │
│     └── Architecture: Distillation, model change                    │
│                                                                     │
│  4. Validate                                                        │
│     └── Verify accuracy maintained, latency improved                │
│                                                                     │
│  5. Deploy and Monitor                                              │
│     └── Track real-world performance                                │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Optimization Priority Matrix

                    High Impact
                         │
    Compiler Opts    ────┼──── Quantization
    (easy win)           │     (best ROI)
                         │
Low Effort ──────────────┼──────────────── High Effort
                         │
    Batching         ────┼──── Distillation
    (quick win)          │     (major effort)
                         │
                    Low Impact

Common Patterns

Multi-Model Serving

┌─────────────────────────────────────────────────────────────────────┐
│                                                                     │
│  Request → ┌─────────┐                                              │
│            │ Router  │                                              │
│            └─────────┘                                              │
│               │   │   │                                             │
│      ┌────────┘   │   └────────┐                                    │
│      ▼            ▼            ▼                                    │
│  ┌───────┐   ┌───────┐   ┌───────┐                                 │
│  │ Tiny  │   │ Small │   │ Large │                                 │
│  │ <10ms │   │ <50ms │   │<500ms │                                 │
│  └───────┘   └───────┘   └───────┘                                 │
│                                                                     │
│  Routing strategies:                                                │
│  • Complexity-based: Simple→Tiny, Complex→Large                    │
│  • Confidence-based: Try Tiny, escalate if low confidence          │
│  • SLA-based: Route based on latency requirements                  │
│                                                                     │
└─────────────────────────────────────────────────────────────────────┘

Speculative Execution

Query: "Translate: Hello"
        │
        ├──▶ Small model (draft): "Bonjour" (5ms)
        │
        └──▶ Large model (verify): Check "Bonjour" (10ms parallel)
             │
             ├── Accept: Return immediately
             └── Reject: Generate with large model

Speedup: 2-3x when drafts are often accepted

Cascade Models

Input → ┌────────┐
        │ Filter │ ← Cheap filter (reject obvious negatives)
        └────────┘
             │ (candidates only)
             ▼
        ┌────────┐
        │ Stage 1│ ← Fast model (coarse ranking)
        └────────┘
             │ (top-100)
             ▼
        ┌────────┐
        │ Stage 2│ ← Accurate model (fine ranking)
        └────────┘
             │ (top-10)
             ▼
         Output

Benefit: 10x cheaper, similar accuracy

Optimization Checklist

Pre-Deployment

  • Profile baseline performance
  • Identify primary bottleneck (model, data, system)
  • Apply compiler optimizations (TensorRT, ONNX)
  • Evaluate quantization (INT8 usually safe)
  • Tune batch size for target throughput
  • Test accuracy after optimization

Deployment

  • Configure appropriate hardware
  • Enable caching where applicable
  • Set up monitoring (latency, throughput, errors)
  • Configure auto-scaling policies
  • Implement graceful degradation

Post-Deployment

  • Monitor p99 latency
  • Track accuracy metrics
  • Analyze cache hit rates
  • Review cost efficiency
  • Plan iterative improvements

Related Skills

  • llm-serving-patterns - LLM-specific serving optimization
  • ml-system-design - End-to-end ML pipeline design
  • quality-attributes-taxonomy - Performance as quality attribute
  • estimation-techniques - Capacity planning for ML systems

Version History

  • v1.0.0 (2025-12-26): Initial release - ML inference optimization patterns

Last Updated

Date: 2025-12-26