Claude Code Plugins

Community-maintained marketplace

Feedback

End-to-end ML system design for production. Use when designing ML pipelines, feature stores, model training infrastructure, or serving systems. Covers the complete lifecycle from data ingestion to model deployment and monitoring.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name ml-system-design
description End-to-end ML system design for production. Use when designing ML pipelines, feature stores, model training infrastructure, or serving systems. Covers the complete lifecycle from data ingestion to model deployment and monitoring.
allowed-tools Read, Glob, Grep

ML System Design

This skill provides frameworks for designing production machine learning systems, from data pipelines to model serving.

When to Use This Skill

Keywords: ML pipeline, machine learning system, feature store, model training, model serving, ML infrastructure, MLOps, A/B testing ML, feature engineering, model deployment

Use this skill when:

  • Designing end-to-end ML systems for production
  • Planning feature store architecture
  • Designing model training pipelines
  • Planning model serving infrastructure
  • Preparing for ML system design interviews
  • Evaluating ML platform tools and frameworks

ML System Architecture Overview

The ML System Lifecycle

┌─────────────────────────────────────────────────────────────────────────┐
│                        ML SYSTEM LIFECYCLE                               │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│  ┌──────────┐   ┌──────────┐   ┌──────────┐   ┌──────────┐   ┌────────┐ │
│  │  Data    │──▶│ Feature  │──▶│  Model   │──▶│  Model   │──▶│ Monitor│ │
│  │ Ingestion│   │ Pipeline │   │ Training │   │ Serving  │   │ & Eval │ │
│  └──────────┘   └──────────┘   └──────────┘   └──────────┘   └────────┘ │
│       │              │              │              │              │      │
│       ▼              ▼              ▼              ▼              ▼      │
│  ┌──────────┐   ┌──────────┐   ┌──────────┐   ┌──────────┐   ┌────────┐ │
│  │  Data    │   │ Feature  │   │  Model   │   │ Inference│   │ Metrics│ │
│  │  Lake    │   │  Store   │   │ Registry │   │  Cache   │   │  Store │ │
│  └──────────┘   └──────────┘   └──────────┘   └──────────┘   └────────┘ │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Key Components

Component Purpose Examples
Data Ingestion Collect raw data from sources Kafka, Kinesis, Pub/Sub
Feature Pipeline Transform raw data to features Spark, Flink, dbt
Feature Store Store and serve features Feast, Tecton, Vertex AI
Model Training Train and validate models SageMaker, Vertex AI, Kubeflow
Model Registry Version and track models MLflow, Weights & Biases
Model Serving Serve predictions TensorFlow Serving, Triton, vLLM
Monitoring Track model performance Evidently, WhyLabs, Arize

Feature Store Architecture

Why Feature Stores?

Problems without a feature store:

  • Training-serving skew (features computed differently)
  • Duplicate feature computation across teams
  • No feature versioning or lineage
  • Slow feature experimentation

Feature Store Components

┌─────────────────────────────────────────────────────────────────┐
│                      FEATURE STORE                               │
├─────────────────────────────────────────────────────────────────┤
│                                                                  │
│  ┌─────────────────────┐       ┌─────────────────────┐          │
│  │   OFFLINE STORE     │       │   ONLINE STORE      │          │
│  │                     │       │                     │          │
│  │  - Historical data  │       │  - Low-latency      │          │
│  │  - Training queries │ ────▶ │  - Point lookups    │          │
│  │  - Batch features   │ sync  │  - Real-time serving│          │
│  │                     │       │                     │          │
│  │  (Data Warehouse)   │       │  (Redis, DynamoDB)  │          │
│  └─────────────────────┘       └─────────────────────┘          │
│                                                                  │
│  ┌─────────────────────────────────────────────────────────────┐│
│  │                   FEATURE REGISTRY                          ││
│  │  - Feature definitions    - Version control                 ││
│  │  - Data lineage          - Access control                   ││
│  └─────────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────────┘

Feature Types

Type Computation Storage Example
Batch Scheduled (hourly/daily) Offline → Online User purchase count (30 days)
Streaming Real-time event processing Direct to online Items in cart (current)
On-demand Request-time computation Not stored Distance to nearest store

Training-Serving Consistency

TRAINING (Historical):
┌──────────────┐    ┌──────────────┐    ┌──────────────┐
│ Historical   │───▶│ Point-in-Time│───▶│  Training    │
│ Events       │    │ Join         │    │  Dataset     │
└──────────────┘    └──────────────┘    └──────────────┘
                          │
                    Uses feature
                    definitions
                          │
SERVING (Real-time):      ▼
┌──────────────┐    ┌──────────────┐    ┌──────────────┐
│ Online       │───▶│ Same Feature │───▶│  Prediction  │
│ Store        │    │ Definitions  │    │  Request     │
└──────────────┘    └──────────────┘    └──────────────┘

Model Training Infrastructure

Training Pipeline Components

┌───────────────────────────────────────────────────────────────────────┐
│                     TRAINING PIPELINE                                  │
├───────────────────────────────────────────────────────────────────────┤
│                                                                        │
│  ┌────────────┐   ┌────────────┐   ┌────────────┐   ┌────────────┐   │
│  │   Data     │──▶│   Feature  │──▶│   Model    │──▶│  Model     │   │
│  │   Loader   │   │   Transform│   │   Train    │   │  Validate  │   │
│  └────────────┘   └────────────┘   └────────────┘   └────────────┘   │
│        │               │                │                 │           │
│        ▼               ▼                ▼                 ▼           │
│  ┌────────────┐   ┌────────────┐   ┌────────────┐   ┌────────────┐   │
│  │ Experiment │   │ Hyperparameter│ │  Checkpoint │  │   Model    │   │
│  │  Tracking  │   │    Tuning     │ │   Storage  │   │  Registry  │   │
│  └────────────┘   └────────────┘   └────────────┘   └────────────┘   │
│                                                                        │
└───────────────────────────────────────────────────────────────────────┘

Training Infrastructure Patterns

Pattern Use Case Tools
Single-node Small datasets, quick experiments Jupyter, local GPU
Distributed data-parallel Large datasets, same model Horovod, PyTorch DDP
Model-parallel Large models that don't fit in memory DeepSpeed, FSDP, Megatron
Hyperparameter tuning Automated model optimization Optuna, Ray Tune

Experiment Tracking

Track for reproducibility:

What to Track Why
Hyperparameters Reproduce training runs
Metrics Compare model performance
Artifacts Model files, datasets
Code version Git commit hash
Environment Docker image, dependencies
Data version Dataset hash or snapshot

Model Serving Architecture

Serving Patterns

Pattern Latency Throughput Use Case
Online (REST/gRPC) Low (<100ms) Medium Real-time predictions
Batch High (hours) Very high Bulk scoring
Streaming Medium High Event-driven predictions
Embedded Very low Varies Edge/mobile inference

Online Serving Architecture

┌─────────────────────────────────────────────────────────────────────┐
│                     MODEL SERVING SYSTEM                             │
├─────────────────────────────────────────────────────────────────────┤
│                                                                      │
│   ┌──────────────┐                                                  │
│   │   Clients    │                                                  │
│   └──────┬───────┘                                                  │
│          │                                                          │
│          ▼                                                          │
│   ┌──────────────┐                                                  │
│   │ Load Balancer│                                                  │
│   └──────┬───────┘                                                  │
│          │                                                          │
│          ▼                                                          │
│   ┌──────────────────────────────────────────────────────────────┐  │
│   │                    API Gateway                                │  │
│   │  - Authentication   - Rate limiting   - Request validation   │  │
│   └──────────────────────────────┬───────────────────────────────┘  │
│                                  │                                  │
│          ┌───────────────────────┼───────────────────────┐         │
│          ▼                       ▼                       ▼         │
│   ┌────────────┐          ┌────────────┐          ┌────────────┐  │
│   │  Model A   │          │  Model B   │          │  Model C   │  │
│   │  (v1.2)    │          │  (v2.0)    │          │  (v1.0)    │  │
│   └────────────┘          └────────────┘          └────────────┘  │
│          │                       │                       │         │
│          └───────────────────────┼───────────────────────┘         │
│                                  ▼                                  │
│                         ┌────────────────┐                         │
│                         │ Feature Store  │                         │
│                         │ (Online)       │                         │
│                         └────────────────┘                         │
│                                                                      │
└─────────────────────────────────────────────────────────────────────┘

Latency Optimization

Technique Latency Impact Trade-off
Batching Reduces per-request Increases latency for first request
Caching 10-100x faster May serve stale predictions
Quantization 2-4x faster Slight accuracy loss
Distillation Variable Training overhead
GPU inference 10-100x faster Cost increase

A/B Testing ML Models

Experiment Design

┌─────────────────────────────────────────────────────────────────────┐
│                      A/B TESTING ARCHITECTURE                        │
├─────────────────────────────────────────────────────────────────────┤
│                                                                      │
│   ┌──────────────┐                                                  │
│   │   Traffic    │                                                  │
│   └──────┬───────┘                                                  │
│          │                                                          │
│          ▼                                                          │
│   ┌──────────────────────┐                                          │
│   │ Experiment Assignment │ ◀─────── Experiment Config              │
│   │ - User bucketing      │          - Allocation %                 │
│   │ - Feature flags       │          - Target segments              │
│   └──────────┬───────────┘          - Guardrails                   │
│              │                                                       │
│     ┌────────┴────────┐                                             │
│     ▼                 ▼                                             │
│ ┌────────┐       ┌────────┐                                         │
│ │Control │       │Treatment│                                        │
│ │Model A │       │Model B  │                                        │
│ └────┬───┘       └────┬───┘                                         │
│      │                │                                              │
│      └────────┬───────┘                                             │
│               ▼                                                      │
│      ┌────────────────┐                                             │
│      │ Metrics Logger │                                             │
│      └────────┬───────┘                                             │
│               ▼                                                      │
│      ┌────────────────┐                                             │
│      │ Statistical    │ ─────▶ Decision: Ship / Iterate / Kill     │
│      │ Analysis       │                                             │
│      └────────────────┘                                             │
│                                                                      │
└─────────────────────────────────────────────────────────────────────┘

Metrics to Track

Metric Type Examples Purpose
Model metrics AUC, RMSE, precision/recall Model quality
Business metrics CTR, conversion, revenue Business impact
Guardrail metrics Latency, error rate, engagement Prevent regressions
Segment metrics Metrics by user segment Detect heterogeneous effects

Statistical Considerations

  • Sample size: Calculate power before experiment
  • Duration: Account for novelty effects and time patterns
  • Multiple testing: Adjust for multiple metrics (Bonferroni, FDR)
  • Early stopping: Use sequential testing methods

Model Monitoring

What to Monitor

Category Metrics Alert Threshold
Data quality Missing values, schema drift >1% change
Feature drift Distribution shift (PSI, KL) PSI >0.2
Prediction drift Output distribution shift Depends on use case
Model performance Accuracy, AUC (when labels available) >5% degradation
Operational Latency, throughput, errors SLO violations

Drift Detection

┌─────────────────────────────────────────────────────────────────────┐
│                      DRIFT DETECTION PIPELINE                        │
├─────────────────────────────────────────────────────────────────────┤
│                                                                      │
│  Training Data                 Production Data                       │
│  ┌──────────────┐              ┌──────────────┐                     │
│  │ Reference    │              │   Current    │                     │
│  │ Distribution │              │ Distribution │                     │
│  └──────┬───────┘              └──────┬───────┘                     │
│         │                             │                              │
│         └──────────────┬──────────────┘                              │
│                        ▼                                             │
│              ┌──────────────────┐                                   │
│              │ Statistical Test │                                   │
│              │ - PSI (Population Stability Index)                   │
│              │ - KS Test                                            │
│              │ - Chi-squared                                        │
│              └────────┬─────────┘                                   │
│                       ▼                                              │
│              ┌──────────────────┐                                   │
│              │  Drift Score     │                                   │
│              └────────┬─────────┘                                   │
│                       │                                              │
│           ┌───────────┼───────────┐                                 │
│           ▼           ▼           ▼                                 │
│      No Drift    Warning     Critical                               │
│      (< 0.1)    (0.1-0.2)    (> 0.2)                               │
│         │           │           │                                   │
│         ▼           ▼           ▼                                   │
│      Continue    Investigate   Retrain                              │
│                                                                      │
└─────────────────────────────────────────────────────────────────────┘

Common ML System Design Patterns

Pattern 1: Recommendation System

Components needed:
- Candidate Generation (retrieve 100s-1000s)
- Ranking Model (score and sort)
- Feature Store (user features, item features)
- Real-time personalization (recent behavior)
- A/B testing infrastructure

Pattern 2: Fraud Detection

Components needed:
- Real-time feature computation
- Low-latency model serving (<50ms)
- High recall focus (can't miss fraud)
- Explainability for compliance
- Human-in-the-loop review
- Feedback loop for labels

Pattern 3: Search Ranking

Components needed:
- Two-stage ranking (retrieval + ranking)
- Feature store for query/document features
- Low latency (<200ms end-to-end)
- Learning to rank models
- Click-through rate prediction
- A/B testing with interleaving

Estimation for ML Systems

Training Infrastructure

Training time estimation:
- Dataset size: 100M examples
- Model: Transformer (100M params)
- GPU: A100 (80GB, 312 TFLOPS)
- Batch size: 32
- Training steps: Dataset / batch = 3.1M steps
- Time per step: ~100ms
- Total time: ~86 hours single GPU
- With 8 GPUs (data parallel): ~11 hours

Serving Infrastructure

Inference estimation:
- QPS: 10,000
- Model latency: 20ms
- Batch size: 1 (real-time)
- GPU utilization: 50% (latency constraint)
- Requests per GPU/sec: 25
- GPUs needed: 10,000 / 25 = 400 GPUs
- With batching (batch 8): 100 GPUs (4x reduction)

Related Skills

  • llm-serving-patterns - LLM-specific serving and optimization
  • rag-architecture - Retrieval-Augmented Generation patterns
  • vector-databases - Vector search and embeddings
  • ml-inference-optimization - Latency and cost optimization
  • estimation-techniques - Back-of-envelope calculations
  • quality-attributes-taxonomy - NFR definitions

Related Commands

  • /sd:ml-pipeline <problem> - Design ML system interactively
  • /sd:estimate <scenario> - Capacity calculations

Related Agents

  • ml-systems-designer - Design ML architectures
  • ml-interviewer - Mock ML system design interviews

Version History

  • v1.0.0 (2025-12-26): Initial release

Last Updated

Date: 2025-12-26 Model: claude-opus-4-5-20251101