Claude Code Plugins

Community-maintained marketplace

Feedback

multi-agent-observability

@melodic-software/claude-code-plugins
1
0

Build observability interfaces for multi-agent systems. Use when monitoring multi-agent execution, tracking agent metrics, implementing logging for parallel agents, or debugging agent workflows.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name multi-agent-observability
description Build observability interfaces for multi-agent systems. Use when monitoring multi-agent execution, tracking agent metrics, implementing logging for parallel agents, or debugging agent workflows.
allowed-tools Read, Grep, Glob

Multi-Agent Observability Skill

Build observability interfaces for monitoring and measuring multi-agent systems.

Purpose

Guide the design and implementation of observability layers that provide real-time visibility into multi-agent execution.

When to Use

  • Designing monitoring for agent fleets
  • Building metrics dashboards
  • Implementing logging architecture
  • Creating cost tracking systems

Prerequisites

  • Understanding of the Three Pillars (@three-pillars-orchestration.md)
  • Familiarity with results-oriented patterns (@results-oriented-engineering.md)
  • Access to Claude Agent SDK documentation

SDK Requirement

Implementation Note: Full observability requires Claude Agent SDK with custom MCP tools and UI components. This skill provides design patterns.

The Critical Principle

"If you can't measure it, you can't improve it. If you can't measure it, you can't scale it."

What to Observe

Per-Agent Metrics

Metric Purpose How to Track
Status Know state Agent state enum
Context usage Token consumption API response
Cost Financial impact API usage data
Tool calls What it's doing Hook logging
Results Output verification Result parsing
Duration Execution time Timestamps

Aggregate Metrics

Metric Purpose Calculation
Total agents Scale Count active
Total duration End-to-end time First to last
Total cost Financial total Sum per-agent
Success rate Reliability Success / total
Coverage Scope Files touched

Observability Components

1. Agent Cards

Real-time status for each agent:

┌─────────────────────────────────────┐
│ scout_1                 [EXECUTING] │
├─────────────────────────────────────┤
│ Template: scout-fast                │
│ Model: haiku                        │
│ Context: 12,500 / 100,000 tokens    │
│ Cost: $0.05                         │
│ Duration: 45s                       │
│ Tool calls: 15                      │
└─────────────────────────────────────┘

Required fields:

  • Agent ID and template
  • Status (idle, executing, complete, error)
  • Model being used
  • Context usage (current / max)
  • Running cost
  • Execution duration
  • Tool call count

2. Event Stream

Real-time log of all activities:

[10:30:00] scout_1 created (template: scout-fast)
[10:30:01] scout_1 commanded: "Analyze auth module"
[10:30:05] scout_1 Read: src/auth/login.ts
[10:30:08] scout_1 Grep: "password" in src/auth/
[10:30:15] scout_1 completed (duration: 14s)
[10:30:16] scout_1 deleted

Event types:

  • Agent lifecycle (create, delete)
  • Commands sent
  • Tool calls
  • Status changes
  • Errors

3. Cost Tracking

Track spend per agent and total:

Cost Summary
────────────────────────────────────
scout_1 (haiku)      $0.05
scout_2 (haiku)      $0.04
builder_1 (sonnet)   $0.35
reviewer_1 (sonnet)  $0.12
────────────────────────────────────
Total                $0.56
Budget remaining     $4.44 (89%)

Cost components:

  • Input tokens
  • Output tokens
  • Per-agent breakdown
  • Running total
  • Budget tracking

4. Result Inspector

View consumed and produced assets:

Agent: builder_1

Consumed Assets:
├── Scout report (summary)
├── src/auth/middleware.ts
└── package.json

Produced Assets:
├── src/auth/rate-limit.ts (created)
├── src/auth/middleware.ts (modified)
└── tests/rate-limit.test.ts (created)

Summary: "Implemented rate limiting middleware"
Status: completed

5. Log Viewer

Filterable activity history:

Filters: [agent: all] [level: all] [tool: all]

10:30:00 INFO  scout_1   Created from template
10:30:01 INFO  scout_1   Received command
10:30:05 DEBUG scout_1   Read: src/auth/login.ts (1,200 tokens)
10:30:08 DEBUG scout_1   Grep: found 5 matches
10:30:12 WARN  scout_1   Context at 80% capacity
10:30:15 INFO  scout_1   Completed successfully

Implementation Patterns

Logging Architecture

# Event types
class AgentEvent:
    timestamp: datetime
    agent_id: str
    event_type: str  # create, command, tool, status, error
    details: dict

# Log collector
def log_event(event: AgentEvent):
    # Store to database
    db.events.insert(event)
    # Emit to WebSocket
    ws.broadcast(event)
    # Update metrics
    metrics.update(event)

Real-Time Updates

# WebSocket for live updates
async def agent_status_stream(agent_id):
    while agent_active(agent_id):
        status = get_agent_status(agent_id)
        yield status
        await asyncio.sleep(1)

Cost Calculation

def calculate_cost(usage):
    input_cost = usage.input_tokens * MODEL_INPUT_PRICE
    output_cost = usage.output_tokens * MODEL_OUTPUT_PRICE
    return input_cost + output_cost

UI Components

Minimal CLI View

Orchestration: Add rate limiting
────────────────────────────────────
Agents: 3 active | 2 complete | 0 error
Cost: $0.56 / $5.00 budget
Progress: ████████░░ 80%

[scout_1] ✓ complete (14s)
[scout_2] ✓ complete (12s)
[builder] ⚡ executing (45s)

Rich Dashboard View

┌─────────────────────────────────────────────────────────────┐
│                    Orchestration Dashboard                    │
├─────────────────────────────────────────────────────────────┤
│ Task: Add rate limiting to authentication                    │
│ Started: 10:30:00 | Duration: 2m 15s | Cost: $0.56          │
├─────────────────────────────────────────────────────────────┤
│ Agent Fleet                          │ Event Stream          │
│ ┌─────────────────────────────────┐  │ [10:32:15] builder   │
│ │ scout_1        [✓ complete]    │  │   Write: rate-limit  │
│ │ scout_2        [✓ complete]    │  │ [10:32:10] builder   │
│ │ builder        [⚡ executing]   │  │   Read: middleware   │
│ │ reviewer       [○ pending]     │  │ [10:30:15] scout_2   │
│ └─────────────────────────────────┘  │   completed          │
├─────────────────────────────────────────────────────────────┤
│ Cost Breakdown     │ Results Summary                         │
│ haiku:  $0.09     │ Files read: 8                           │
│ sonnet: $0.47     │ Files written: 3                        │
│ Total:  $0.56     │ Tests: 5/5 passing                      │
└─────────────────────────────────────────────────────────────┘

Design Checklist

  • Per-agent metrics defined
  • Aggregate metrics calculated
  • Event logging implemented
  • Real-time updates via WebSocket
  • Cost tracking per agent
  • Result inspection available
  • Log filtering supported
  • UI components designed

Output Format

When designing observability, provide:

## Observability Design

### Metrics

**Per-Agent:**
[List with tracking method]

**Aggregate:**
[List with calculation]

### Components

**Agent Cards:** [fields and update frequency]
**Event Stream:** [event types and storage]
**Cost Tracking:** [breakdown and budgets]
**Result Inspector:** [consumed/produced format]
**Log Viewer:** [filters and retention]

### Implementation

**Logging:** [architecture]
**Real-Time:** [WebSocket design]
**Storage:** [database schema]
**UI:** [component specifications]

Anti-Patterns

Anti-Pattern Problem Solution
No metrics Flying blind Track everything
Delayed updates Stale status Real-time WebSocket
No cost tracking Budget overruns Per-agent costs
Missing logs Can't debug Log all events
No aggregation Can't summarize Calculate totals

Cross-References

  • @three-pillars-orchestration.md - Observability pillar
  • @results-oriented-engineering.md - Result patterns
  • @agent-lifecycle-crud.md - Agent state tracking
  • @orchestrator-design skill - System architecture

Version History

  • v1.0.0 (2025-12-26): Initial release

Last Updated

Date: 2025-12-26 Model: claude-opus-4-5-20251101