Claude Code Plugins

Community-maintained marketplace

Feedback

Data modeling, schema design, and data architecture

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name data-design
description Data modeling, schema design, and data architecture
domain software-design
version 1.0.0
tags data-modeling, schema, normalization, denormalization, etl, data-governance
triggers [object Object]

Data Design

Overview

Principles for designing data structures, schemas, and data flows that are efficient, maintainable, and scalable.


Data Modeling

Entity-Relationship Diagrams

┌─────────────┐       ┌─────────────┐       ┌─────────────┐
│    User     │       │    Order    │       │   Product   │
├─────────────┤       ├─────────────┤       ├─────────────┤
│ id (PK)     │──┐    │ id (PK)     │    ┌──│ id (PK)     │
│ email       │  │    │ user_id(FK) │←───┘  │ name        │
│ name        │  └───→│ status      │       │ price       │
│ created_at  │       │ total       │       │ stock       │
└─────────────┘       │ created_at  │       └─────────────┘
                      └─────────────┘              │
                             │                     │
                      ┌──────┴──────┐              │
                      ↓             ↓              │
               ┌─────────────┐                     │
               │ OrderItem   │                     │
               ├─────────────┤                     │
               │ id (PK)     │                     │
               │ order_id(FK)│                     │
               │ product_id  │─────────────────────┘
               │ quantity    │
               │ price       │
               └─────────────┘

Relationship Types

Type Description Example
1:1 One to one User ↔ Profile
1:N One to many User → Orders
M:N Many to many Students ↔ Courses
-- 1:1 (profile extends user)
CREATE TABLE users (
  id SERIAL PRIMARY KEY,
  email VARCHAR(255) UNIQUE
);

CREATE TABLE profiles (
  user_id INTEGER PRIMARY KEY REFERENCES users(id),
  bio TEXT,
  avatar_url VARCHAR(255)
);

-- 1:N (user has many orders)
CREATE TABLE orders (
  id SERIAL PRIMARY KEY,
  user_id INTEGER REFERENCES users(id),
  total DECIMAL(10,2)
);

-- M:N (students ↔ courses via junction table)
CREATE TABLE enrollments (
  student_id INTEGER REFERENCES students(id),
  course_id INTEGER REFERENCES courses(id),
  enrolled_at TIMESTAMP DEFAULT NOW(),
  PRIMARY KEY (student_id, course_id)
);

Normalization

Normal Forms

Form Rule Example Violation
1NF Atomic values, no repeating groups tags: "a,b,c"
2NF 1NF + no partial dependencies Non-key depends on part of composite key
3NF 2NF + no transitive dependencies zip → city in orders table
BCNF Every determinant is a candidate key Rare edge cases
-- ❌ Violates 1NF (non-atomic)
CREATE TABLE products (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255),
  tags VARCHAR(255)  -- "electronics,sale,featured"
);

-- ✅ 1NF compliant
CREATE TABLE products (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255)
);

CREATE TABLE product_tags (
  product_id INTEGER REFERENCES products(id),
  tag VARCHAR(50),
  PRIMARY KEY (product_id, tag)
);

-- ❌ Violates 3NF (transitive dependency)
CREATE TABLE orders (
  id SERIAL PRIMARY KEY,
  customer_zip VARCHAR(10),
  customer_city VARCHAR(100)  -- Depends on zip, not order
);

-- ✅ 3NF compliant
CREATE TABLE customers (
  id SERIAL PRIMARY KEY,
  zip VARCHAR(10),
  city VARCHAR(100)
);

CREATE TABLE orders (
  id SERIAL PRIMARY KEY,
  customer_id INTEGER REFERENCES customers(id)
);

Denormalization

When to Denormalize

Normalize for:
✅ Write-heavy workloads
✅ Data integrity requirements
✅ Storage efficiency
✅ Flexibility in queries

Denormalize for:
✅ Read-heavy workloads
✅ Complex joins hurting performance
✅ Reporting/analytics
✅ Known access patterns

Denormalization Patterns

-- Computed columns
CREATE TABLE orders (
  id SERIAL PRIMARY KEY,
  items JSONB,
  item_count INTEGER GENERATED ALWAYS AS (jsonb_array_length(items)) STORED,
  total DECIMAL(10,2)
);

-- Duplicated data for read performance
CREATE TABLE posts (
  id SERIAL PRIMARY KEY,
  author_id INTEGER REFERENCES users(id),
  author_name VARCHAR(100),  -- Duplicated from users
  author_avatar VARCHAR(255), -- Duplicated from users
  content TEXT
);

-- Materialized view for complex queries
CREATE MATERIALIZED VIEW monthly_sales AS
SELECT
  DATE_TRUNC('month', created_at) as month,
  product_id,
  SUM(quantity) as units_sold,
  SUM(total) as revenue
FROM order_items
GROUP BY 1, 2;

-- Refresh periodically
REFRESH MATERIALIZED VIEW CONCURRENTLY monthly_sales;

Schema Design Patterns

Soft Deletes

CREATE TABLE users (
  id SERIAL PRIMARY KEY,
  email VARCHAR(255),
  deleted_at TIMESTAMP NULL,
  -- Partial unique index
  CONSTRAINT unique_active_email UNIQUE (email) WHERE deleted_at IS NULL
);

-- Query active users only
SELECT * FROM users WHERE deleted_at IS NULL;

Audit Trail

CREATE TABLE audit_log (
  id SERIAL PRIMARY KEY,
  table_name VARCHAR(100),
  record_id INTEGER,
  action VARCHAR(10),  -- INSERT, UPDATE, DELETE
  old_data JSONB,
  new_data JSONB,
  changed_by INTEGER REFERENCES users(id),
  changed_at TIMESTAMP DEFAULT NOW()
);

-- Trigger for automatic auditing
CREATE OR REPLACE FUNCTION audit_trigger()
RETURNS TRIGGER AS $$
BEGIN
  INSERT INTO audit_log (table_name, record_id, action, old_data, new_data, changed_by)
  VALUES (
    TG_TABLE_NAME,
    COALESCE(NEW.id, OLD.id),
    TG_OP,
    CASE WHEN TG_OP != 'INSERT' THEN to_jsonb(OLD) END,
    CASE WHEN TG_OP != 'DELETE' THEN to_jsonb(NEW) END,
    current_setting('app.user_id', true)::INTEGER
  );
  RETURN COALESCE(NEW, OLD);
END;
$$ LANGUAGE plpgsql;

Multi-Tenancy

-- Row-level security
CREATE TABLE organizations (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255)
);

CREATE TABLE projects (
  id SERIAL PRIMARY KEY,
  org_id INTEGER REFERENCES organizations(id),
  name VARCHAR(255)
);

-- Enable RLS
ALTER TABLE projects ENABLE ROW LEVEL SECURITY;

CREATE POLICY org_isolation ON projects
  USING (org_id = current_setting('app.org_id')::INTEGER);

-- Set org context per request
SET app.org_id = 123;
SELECT * FROM projects; -- Only sees org 123's projects

Versioning / History

-- Version table pattern
CREATE TABLE documents (
  id SERIAL PRIMARY KEY,
  current_version_id INTEGER
);

CREATE TABLE document_versions (
  id SERIAL PRIMARY KEY,
  document_id INTEGER REFERENCES documents(id),
  version INTEGER,
  content TEXT,
  created_at TIMESTAMP DEFAULT NOW(),
  created_by INTEGER REFERENCES users(id),
  UNIQUE (document_id, version)
);

-- Temporal tables (PostgreSQL)
CREATE TABLE products (
  id SERIAL PRIMARY KEY,
  name VARCHAR(255),
  price DECIMAL(10,2),
  valid_from TIMESTAMP DEFAULT NOW(),
  valid_to TIMESTAMP DEFAULT 'infinity'
);

-- Query historical state
SELECT * FROM products
WHERE valid_from <= '2024-01-01' AND valid_to > '2024-01-01';

NoSQL Schema Design

Document Store (MongoDB)

// Embedded vs Referenced

// ✅ Embed when: data is accessed together, 1:few relationship
{
  _id: ObjectId("..."),
  title: "Blog Post",
  author: {
    name: "John",
    email: "john@example.com"
  },
  comments: [
    { user: "Jane", text: "Great post!", date: ISODate("...") }
  ]
}

// ✅ Reference when: data is accessed independently, 1:many or M:N
{
  _id: ObjectId("..."),
  title: "Blog Post",
  authorId: ObjectId("..."),  // Reference to users collection
  commentIds: [ObjectId("..."), ObjectId("...")]
}

// ❌ Anti-pattern: Unbounded arrays
{
  _id: ObjectId("..."),
  logs: [...] // Can grow to millions, hits 16MB limit
}

// ✅ Better: Bucket pattern
{
  _id: ObjectId("..."),
  sensorId: "sensor-123",
  date: ISODate("2024-01-15"),
  readings: [...] // Max ~1000 per document
}

Key-Value Store (Redis)

# Naming conventions
user:123              # User object
user:123:sessions     # User's sessions (set)
user:123:orders       # User's orders (list)
order:456             # Order object
orders:pending        # Queue of pending orders (list)
products:category:electronics  # Products in category (set)

# Expiration patterns
session:{token}       # Expires after 30 min
rate_limit:ip:1.2.3.4 # Expires after 1 min
cache:api:/users/123  # Expires after 5 min

Data Pipeline Design

ETL vs ELT

ETL (Extract, Transform, Load):
Source → Transform (external) → Data Warehouse
Use: Traditional, when transformation is complex

ELT (Extract, Load, Transform):
Source → Data Lake/Warehouse → Transform (in-place)
Use: Modern, leverages warehouse compute power

Event Sourcing

// Events are the source of truth
interface Event {
  id: string;
  aggregateId: string;
  type: string;
  payload: unknown;
  timestamp: Date;
  version: number;
}

// Event store
class EventStore {
  async append(aggregateId: string, events: Event[]) {
    await db.events.insertMany(events);
  }

  async getEvents(aggregateId: string): Promise<Event[]> {
    return db.events
      .find({ aggregateId })
      .sort({ version: 1 })
      .toArray();
  }
}

// Rebuild state from events
function rebuildAccount(events: Event[]): Account {
  return events.reduce((account, event) => {
    switch (event.type) {
      case 'AccountOpened':
        return { balance: 0, ...event.payload };
      case 'MoneyDeposited':
        return { ...account, balance: account.balance + event.payload.amount };
      case 'MoneyWithdrawn':
        return { ...account, balance: account.balance - event.payload.amount };
      default:
        return account;
    }
  }, {} as Account);
}

Data Governance

Data Quality Dimensions

Dimension Description Example Check
Accuracy Correct values Email format validation
Completeness No missing data Required fields present
Consistency Same across systems User ID matches in all tables
Timeliness Up to date Last updated within 24h
Uniqueness No duplicates Unique email per user

Schema Evolution

-- Safe migrations

-- ✅ Adding nullable column
ALTER TABLE users ADD COLUMN phone VARCHAR(20) NULL;

-- ✅ Adding column with default
ALTER TABLE users ADD COLUMN status VARCHAR(20) DEFAULT 'active';

-- ⚠️ Making column non-null (multi-step)
-- Step 1: Add with default
ALTER TABLE users ADD COLUMN verified BOOLEAN DEFAULT false;
-- Step 2: Backfill data
UPDATE users SET verified = true WHERE email_verified_at IS NOT NULL;
-- Step 3: Add constraint
ALTER TABLE users ALTER COLUMN verified SET NOT NULL;

-- ❌ Dangerous: Renaming column
-- Instead: Add new, migrate data, remove old (over multiple deploys)

Related Skills

  • [[database]] - Database implementation
  • [[architecture-patterns]] - Data architecture patterns
  • [[api-design]] - Data in APIs