| name | site-crawler |
| description | Crawl and extract content from websites |
Site Crawler Skill
Respectfully crawl documentation sites and web content for RAG ingestion.
Overview
Documentation sites, blogs, and knowledge bases contain valuable structured content. This skill covers:
- Respectful crawling (robots.txt, rate limiting)
- Structure-preserving extraction
- Incremental updates (only fetch changed pages)
- Sitemap-based discovery
Prerequisites
# HTTP client
pip install httpx
# HTML parsing
pip install beautifulsoup4 lxml
# Clean article extraction
pip install trafilatura
# Markdown conversion
pip install markdownify
Crawling Principles
1. Be Respectful
- Always check robots.txt
- Rate limit requests (1-2 seconds between)
- Identify yourself with a User-Agent
- Don't overload servers
2. Be Efficient
- Use sitemaps when available
- Track what's been crawled
- Only re-fetch changed content
- Skip non-content pages (login, search results)
3. Be Smart
- Preserve document structure
- Extract meaningful content only
- Handle pagination
- Detect and follow documentation structure
Core Implementation
Robots.txt Handling
#!/usr/bin/env python3
"""Robots.txt compliance."""
from urllib.robotparser import RobotFileParser
from urllib.parse import urljoin, urlparse
from typing import Optional
import httpx
class RobotsChecker:
"""Check robots.txt compliance before crawling."""
def __init__(self, user_agent: str = "ContentHarvester/1.0"):
self.user_agent = user_agent
self.parsers: dict = {}
async def can_fetch(self, url: str) -> bool:
"""Check if URL can be fetched according to robots.txt."""
parsed = urlparse(url)
base_url = f"{parsed.scheme}://{parsed.netloc}"
if base_url not in self.parsers:
await self._load_robots(base_url)
parser = self.parsers.get(base_url)
if parser is None:
return True # No robots.txt = allow all
return parser.can_fetch(self.user_agent, url)
async def _load_robots(self, base_url: str):
"""Load and parse robots.txt."""
robots_url = f"{base_url}/robots.txt"
try:
async with httpx.AsyncClient() as client:
response = await client.get(robots_url, timeout=10)
if response.status_code == 200:
parser = RobotFileParser()
parser.parse(response.text.split("
"))
self.parsers[base_url] = parser
else:
self.parsers[base_url] = None
except Exception:
self.parsers[base_url] = None
def get_crawl_delay(self, base_url: str) -> Optional[float]:
"""Get crawl delay from robots.txt."""
parser = self.parsers.get(base_url)
if parser:
delay = parser.crawl_delay(self.user_agent)
return delay if delay else None
return None
Content Extractor
#!/usr/bin/env python3
"""Clean content extraction from HTML."""
from bs4 import BeautifulSoup
import trafilatura
from markdownify import markdownify as md
from typing import Dict, Optional
import re
def extract_content(html: str, url: str) -> Dict:
"""
Extract clean content from HTML.
Uses multiple strategies for best results.
"""
result = {
"title": "",
"content": "",
"markdown": "",
"headings": [],
"links": [],
"metadata": {}
}
soup = BeautifulSoup(html, 'lxml')
# Get title
title_tag = soup.find('title')
if title_tag:
result["title"] = title_tag.get_text().strip()
# Try trafilatura for clean extraction
extracted = trafilatura.extract(
html,
include_comments=False,
include_tables=True,
include_links=True,
output_format='markdown'
)
if extracted:
result["markdown"] = extracted
result["content"] = trafilatura.extract(html, output_format='txt') or ""
else:
# Fallback to manual extraction
result["markdown"] = extract_main_content(soup)
result["content"] = soup.get_text(separator=' ', strip=True)
# Extract headings for structure
for heading in soup.find_all(['h1', 'h2', 'h3', 'h4']):
result["headings"].append({
"level": int(heading.name[1]),
"text": heading.get_text().strip()
})
# Extract metadata
for meta in soup.find_all('meta'):
name = meta.get('name', meta.get('property', ''))
content = meta.get('content', '')
if name and content:
result["metadata"][name] = content
# Extract internal links for crawling
for link in soup.find_all('a', href=True):
href = link['href']
if href.startswith('/') or href.startswith(url):
result["links"].append(href)
return result
def extract_main_content(soup: BeautifulSoup) -> str:
"""Extract main content area, removing navigation/footer."""
# Remove unwanted elements
for tag in soup.find_all(['nav', 'footer', 'aside', 'script', 'style', 'header']):
tag.decompose()
# Try to find main content area
main = (
soup.find('main') or
soup.find('article') or
soup.find('div', class_=re.compile(r'content|main|post|article', re.I)) or
soup.find('body')
)
if main:
# Convert to markdown
return md(str(main), heading_style="ATX", strip=['script', 'style'])
return ""
def extract_docs_structure(html: str, url: str) -> Dict:
"""
Extract documentation-specific structure.
Handles common doc frameworks: Docusaurus, MkDocs, Sphinx, GitBook, etc.
"""
soup = BeautifulSoup(html, 'lxml')
structure = {
"title": "",
"breadcrumbs": [],
"sidebar_links": [],
"content": "",
"prev_page": None,
"next_page": None
}
# Title
title = soup.find('h1') or soup.find('title')
if title:
structure["title"] = title.get_text().strip()
# Breadcrumbs (common in docs)
breadcrumb = soup.find(class_=re.compile(r'breadcrumb', re.I))
if breadcrumb:
structure["breadcrumbs"] = [
a.get_text().strip()
for a in breadcrumb.find_all('a')
]
# Sidebar navigation
sidebar = soup.find(class_=re.compile(r'sidebar|nav|menu', re.I))
if sidebar:
for link in sidebar.find_all('a', href=True):
structure["sidebar_links"].append({
"text": link.get_text().strip(),
"href": link['href']
})
# Prev/Next navigation
prev_link = soup.find('a', class_=re.compile(r'prev', re.I))
next_link = soup.find('a', class_=re.compile(r'next', re.I))
if prev_link:
structure["prev_page"] = prev_link.get('href')
if next_link:
structure["next_page"] = next_link.get('href')
# Main content
structure["content"] = extract_main_content(soup)
return structure
Site Crawler
#!/usr/bin/env python3
"""Full site crawler implementation."""
import asyncio
import httpx
from urllib.parse import urljoin, urlparse
from typing import Dict, List, Set, Optional
from datetime import datetime
import hashlib
import xml.etree.ElementTree as ET
class SiteCrawler:
"""Crawl a site respectfully and extract content."""
def __init__(
self,
base_url: str,
user_agent: str = "ContentHarvester/1.0",
rate_limit: float = 1.0, # seconds between requests
max_pages: int = 100
):
self.base_url = base_url.rstrip('/')
self.domain = urlparse(base_url).netloc
self.user_agent = user_agent
self.rate_limit = rate_limit
self.max_pages = max_pages
self.robots = RobotsChecker(user_agent)
self.visited: Set[str] = set()
self.results: List[Dict] = []
def _normalize_url(self, url: str) -> str:
"""Normalize URL for deduplication."""
# Remove fragments
url = url.split('#')[0]
# Remove trailing slash
url = url.rstrip('/')
return url
def _is_same_domain(self, url: str) -> bool:
"""Check if URL is on same domain."""
return urlparse(url).netloc == self.domain
def _should_skip(self, url: str) -> bool:
"""Check if URL should be skipped."""
skip_patterns = [
'/search', '/login', '/signup', '/auth',
'/api/', '/_', '/tag/', '/category/',
'.pdf', '.zip', '.png', '.jpg', '.gif'
]
return any(pattern in url.lower() for pattern in skip_patterns)
async def get_sitemap_urls(self) -> List[str]:
"""Try to get URLs from sitemap."""
urls = []
sitemap_locations = [
f"{self.base_url}/sitemap.xml",
f"{self.base_url}/sitemap_index.xml",
]
async with httpx.AsyncClient() as client:
for sitemap_url in sitemap_locations:
try:
response = await client.get(sitemap_url, timeout=10)
if response.status_code == 200:
urls.extend(self._parse_sitemap(response.text))
break
except Exception:
continue
return urls
def _parse_sitemap(self, xml_content: str) -> List[str]:
"""Parse sitemap XML."""
urls = []
try:
root = ET.fromstring(xml_content)
# Handle namespace
ns = {'sm': 'http://www.sitemaps.org/schemas/sitemap/0.9'}
# Check for sitemap index
for sitemap in root.findall('.//sm:sitemap/sm:loc', ns):
# This is an index, would need to fetch sub-sitemaps
pass
# Get URLs
for url in root.findall('.//sm:url/sm:loc', ns):
if url.text:
urls.append(url.text)
except ET.ParseError:
pass
return urls
async def crawl(
self,
start_urls: List[str] = None,
use_sitemap: bool = True
) -> List[Dict]:
"""
Crawl the site starting from given URLs.
Args:
start_urls: URLs to start crawling from
use_sitemap: Whether to try sitemap first
Returns:
List of extracted page contents
"""
# Initialize URL queue
to_visit = []
if use_sitemap:
sitemap_urls = await self.get_sitemap_urls()
to_visit.extend(sitemap_urls[:self.max_pages])
if start_urls:
to_visit.extend(start_urls)
if not to_visit:
to_visit = [self.base_url]
# Crawl loop
async with httpx.AsyncClient(
headers={"User-Agent": self.user_agent},
follow_redirects=True,
timeout=30
) as client:
while to_visit and len(self.visited) < self.max_pages:
url = self._normalize_url(to_visit.pop(0))
if url in self.visited:
continue
if not self._is_same_domain(url):
continue
if self._should_skip(url):
continue
# Check robots.txt
if not await self.robots.can_fetch(url):
continue
try:
# Rate limit
await asyncio.sleep(self.rate_limit)
# Fetch page
response = await client.get(url)
if response.status_code != 200:
continue
# Skip non-HTML
content_type = response.headers.get('content-type', '')
if 'text/html' not in content_type:
continue
self.visited.add(url)
# Extract content
extracted = extract_content(response.text, url)
extracted["url"] = url
extracted["fetched_at"] = datetime.now().isoformat()
extracted["status_code"] = response.status_code
self.results.append(extracted)
# Add discovered links to queue
for link in extracted.get("links", []):
full_url = urljoin(url, link)
normalized = self._normalize_url(full_url)
if normalized not in self.visited:
to_visit.append(normalized)
except Exception as e:
print(f"Error crawling {url}: {e}")
continue
return self.results
async def crawl_docs(
self,
start_url: str = None
) -> List[Dict]:
"""
Crawl documentation site following prev/next links.
Better for linear documentation structure.
"""
current_url = start_url or self.base_url
async with httpx.AsyncClient(
headers={"User-Agent": self.user_agent},
follow_redirects=True,
timeout=30
) as client:
while current_url and len(self.visited) < self.max_pages:
url = self._normalize_url(current_url)
if url in self.visited:
break
try:
await asyncio.sleep(self.rate_limit)
response = await client.get(url)
if response.status_code != 200:
break
self.visited.add(url)
# Extract with docs structure
extracted = extract_docs_structure(response.text, url)
extracted["url"] = url
extracted["fetched_at"] = datetime.now().isoformat()
self.results.append(extracted)
# Follow next link
if extracted.get("next_page"):
current_url = urljoin(url, extracted["next_page"])
else:
current_url = None
except Exception as e:
print(f"Error: {e}")
break
return self.results
Full Harvesting Pipeline
#!/usr/bin/env python3
"""Complete site harvesting pipeline."""
from datetime import datetime
from typing import Dict, List
import hashlib
async def harvest_site(
url: str,
collection: str,
max_pages: int = 100,
crawl_mode: str = "full", # full, docs, sitemap
rate_limit: float = 1.0
) -> Dict:
"""
Harvest a website into RAG.
Args:
url: Base URL to crawl
collection: Target RAG collection
max_pages: Maximum pages to crawl
crawl_mode: Crawling strategy
rate_limit: Seconds between requests
"""
crawler = SiteCrawler(
base_url=url,
rate_limit=rate_limit,
max_pages=max_pages
)
# Crawl based on mode
if crawl_mode == "docs":
pages = await crawler.crawl_docs()
elif crawl_mode == "sitemap":
pages = await crawler.crawl(use_sitemap=True, start_urls=[])
else:
pages = await crawler.crawl(start_urls=[url])
# Ingest pages
ingested = 0
errors = 0
for page in pages:
try:
# Skip empty pages
content = page.get("markdown") or page.get("content", "")
if len(content.strip()) < 100:
continue
# Generate document ID
url_hash = hashlib.md5(page["url"].encode()).hexdigest()[:12]
doc_id = f"web_{url_hash}"
# Metadata
metadata = {
"source_type": "webpage",
"source_url": page["url"],
"domain": urlparse(page["url"]).netloc,
"title": page.get("title", ""),
"harvested_at": datetime.now().isoformat(),
"headings": [h["text"] for h in page.get("headings", [])[:5]],
}
# Add breadcrumbs if present
if page.get("breadcrumbs"):
metadata["breadcrumbs"] = page["breadcrumbs"]
metadata["section"] = " > ".join(page["breadcrumbs"])
# Chunk if content is large
chunks = chunk_content(content, max_size=500)
for i, chunk in enumerate(chunks):
chunk_metadata = {
**metadata,
"chunk_index": i,
"total_chunks": len(chunks)
}
await ingest(
content=chunk,
collection=collection,
metadata=chunk_metadata,
doc_id=f"{doc_id}_chunk_{i}"
)
ingested += 1
except Exception as e:
errors += 1
print(f"Error ingesting {page.get('url')}: {e}")
return {
"status": "success",
"base_url": url,
"pages_crawled": len(pages),
"pages_ingested": ingested,
"errors": errors,
"collection": collection
}
def chunk_content(content: str, max_size: int = 500) -> List[str]:
"""Chunk content by paragraphs."""
paragraphs = content.split('
')
chunks = []
current = []
current_size = 0
for para in paragraphs:
para_size = len(para.split())
if current_size + para_size > max_size and current:
chunks.append('
'.join(current))
current = []
current_size = 0
current.append(para)
current_size += para_size
if current:
chunks.append('
'.join(current))
return chunks
Metadata Schema
source_type: webpage
source_url: https://docs.example.com/page
domain: docs.example.com
title: "Page Title"
section: "Getting Started > Installation"
breadcrumbs: ["Getting Started", "Installation"]
headings: ["Overview", "Prerequisites", "Steps"]
chunk_index: 0
total_chunks: 3
harvested_at: "2024-01-01T12:00:00Z"
Usage Examples
# Full site crawl
result = await harvest_site(
url="https://docs.example.com",
collection="example_docs",
max_pages=200,
crawl_mode="full"
)
# Documentation (follow prev/next)
result = await harvest_site(
url="https://docs.example.com/getting-started",
collection="example_docs",
crawl_mode="docs"
)
# Sitemap-based
result = await harvest_site(
url="https://blog.example.com",
collection="blog_posts",
crawl_mode="sitemap",
max_pages=50
)
Refinement Notes
Track improvements as you use this skill.
- Robots.txt handling tested
- Rate limiting working
- Content extraction clean
- Sitemap parsing working
- Incremental updates implemented
- Documentation structure preserved