Claude Code Plugins

Community-maintained marketplace

Feedback

moai-formats-data

@modu-ai/cc-plugins
11
0

Data format specialist covering TOON encoding, JSON/YAML optimization, serialization patterns, and data validation for modern applications. Use when optimizing data for LLM transmission, implementing high-performance serialization, validating data schemas, or converting between data formats.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name moai-formats-data
description Data format specialist covering TOON encoding, JSON/YAML optimization, serialization patterns, and data validation for modern applications. Use when optimizing data for LLM transmission, implementing high-performance serialization, validating data schemas, or converting between data formats.
version 2.0.0
category library
modularized true
tags formats, data, toon, serialization, validation, optimization
allowed-tools Read, Write, Edit, Grep, Glob, mcp__context7__resolve-library-id, mcp__context7__get-library-docs
updated Tue Jan 06 2026 00:00:00 GMT+0000 (Coordinated Universal Time)
status active
author MoAI-ADK Team

Data Format Specialist

Quick Reference (30 seconds)

Advanced Data Format Management - Comprehensive data handling covering TOON encoding, JSON/YAML optimization, serialization patterns, and data validation for performance-critical applications.

Core Capabilities:

  • TOON Encoding: 40-60% token reduction vs JSON for LLM communication
  • JSON/YAML Optimization: Efficient serialization and parsing patterns
  • Data Validation: Schema validation, type checking, error handling
  • Format Conversion: Seamless transformation between data formats
  • Performance: Optimized data structures and caching strategies
  • Schema Management: Dynamic schema generation and evolution

When to Use:

  • Optimizing data transmission to LLMs within token budgets
  • High-performance serialization/deserialization
  • Schema validation and data integrity
  • Format conversion and data transformation
  • Large dataset processing and optimization

Quick Start:

# TOON encoding (40-60% token reduction)
from moai_formats_data import TOONEncoder
encoder = TOONEncoder()
compressed = encoder.encode({"user": "John", "age": 30})
original = encoder.decode(compressed)

# Fast JSON processing
from moai_formats_data import JSONOptimizer
optimizer = JSONOptimizer()
fast_json = optimizer.serialize_fast(large_dataset)

# Data validation
from moai_formats_data import DataValidator
validator = DataValidator()
schema = validator.create_schema({"name": {"type": "string", "required": True}})
result = validator.validate({"name": "John"}, schema)

Implementation Guide (5 minutes)

Core Concepts

TOON (Token-Optimized Object Notation):

  • Custom binary-compatible format optimized for LLM token usage
  • Type markers: # (numbers), ! (booleans), @ (timestamps), ~ (null)
  • 40-60% size reduction vs JSON for typical data structures
  • Lossless round-trip encoding/decoding

Performance Optimization:

  • Ultra-fast JSON processing with orjson (2-5x faster than standard json)
  • Streaming processing for large datasets using ijson
  • Intelligent caching with LRU eviction and memory management
  • Schema compression and validation optimization

Data Validation:

  • Type-safe validation with custom rules and patterns
  • Schema evolution and migration support
  • Cross-field validation and dependency checking
  • Performance-optimized batch validation

Basic Implementation

from moai_formats_data import TOONEncoder, JSONOptimizer, DataValidator
from datetime import datetime

# 1. TOON Encoding for LLM optimization
encoder = TOONEncoder()
data = {
    "user": {"id": 123, "name": "John", "active": True, "created": datetime.now()},
    "permissions": ["read", "write", "admin"]
}

# Encode and compare sizes
toon_data = encoder.encode(data)
original_data = encoder.decode(toon_data)

# 2. Fast JSON Processing
optimizer = JSONOptimizer()

# Ultra-fast serialization
json_bytes = optimizer.serialize_fast(data)
parsed_data = optimizer.deserialize_fast(json_bytes)

# Schema compression for repeated validation
schema = {"type": "object", "properties": {"name": {"type": "string"}}}
compressed_schema = optimizer.compress_schema(schema)

# 3. Data Validation
validator = DataValidator()

# Create validation schema
user_schema = validator.create_schema({
    "username": {"type": "string", "required": True, "min_length": 3},
    "email": {"type": "email", "required": True},
    "age": {"type": "integer", "required": False, "min_value": 13}
})

# Validate data
user_data = {"username": "john_doe", "email": "john@example.com", "age": 30}
result = validator.validate(user_data, user_schema)

if result['valid']:
    print("Data is valid!")
    sanitized = result['sanitized_data']
else:
    print("Validation errors:", result['errors'])

Common Use Cases

API Response Optimization:

# Optimize API responses for LLM consumption
def optimize_api_response(data: Dict) -> str:
    encoder = TOONEncoder()
    return encoder.encode(data)

# Parse optimized responses
def parse_optimized_response(toon_data: str) -> Dict:
    encoder = TOONEncoder()
    return encoder.decode(toon_data)

Configuration Management:

# Fast YAML configuration loading
from moai_formats_data import YAMLOptimizer

yaml_optimizer = YAMLOptimizer()
config = yaml_optimizer.load_fast("config.yaml")

# Merge multiple configurations
merged = yaml_optimizer.merge_configs(base_config, env_config, user_config)

Large Dataset Processing:

# Stream processing for large JSON files
from moai_formats_data import StreamProcessor

processor = StreamProcessor(chunk_size=8192)

# Process file line by line without loading into memory
def process_item(item):
    print(f"Processing: {item['id']}")

processor.process_json_stream("large_dataset.json", process_item)

Advanced Features Overview

Advanced TOON Features

See `modules/toon-encoding.md` for:

  • Custom type handlers (UUID, Decimal, etc.)
  • Streaming TOON processing
  • Batch TOON encoding
  • Performance characteristics and benchmarks

Advanced Validation Patterns

See `modules/data-validation.md` for:

  • Cross-field validation
  • Schema evolution and migration
  • Custom validation rules
  • Batch validation optimization

Performance Optimization

See `modules/caching-performance.md` for:

  • Intelligent caching strategies
  • Cache warming and invalidation
  • Memory management
  • Performance monitoring

JSON/YAML Advanced Features

See `modules/json-optimization.md` for:

  • Streaming JSON processing
  • Memory-efficient parsing
  • Schema compression
  • Format conversion utilities

Works Well With

  • moai-domain-backend - Backend data serialization and API responses
  • moai-domain-database - Database data format optimization
  • moai-foundation-core - MCP data serialization and transmission patterns
  • moai-workflow-docs - Documentation data formatting
  • moai-foundation-context - Context optimization for token budgets

Module References

Core Implementation Modules:

Supporting Files:


Technology Stack

Core Libraries:

  • orjson: Ultra-fast JSON parsing and serialization
  • PyYAML: YAML processing with C-based loaders
  • ijson: Streaming JSON parser for large files
  • python-dateutil: Advanced datetime parsing
  • regex: Advanced regular expression support

Performance Tools:

  • lru_cache: Built-in memoization
  • pickle: Object serialization
  • hashlib: Hash generation for caching
  • functools: Function decorators and utilities

Validation Libraries:

  • jsonschema: JSON Schema validation
  • cerberus: Lightweight data validation
  • marshmallow: Object serialization/deserialization
  • pydantic: Data validation using Python type hints

Version History

v2.0.0 (2026-01-06):

  • Modularized skill with progressive disclosure pattern
  • Reduced SKILL.md from 493 to 247 lines (50% reduction)
  • Organized advanced content into focused modules
  • Enhanced module cross-references and integration patterns
  • Updated Context7 MCP tools in allowed-tools

v1.0.0 (2025-12-06):

  • Initial release with monolithic structure
  • TOON encoding, JSON/YAML optimization, data validation
  • Basic caching and performance features

Status: Production Ready Last Updated: 2026-01-06 Maintained by: MoAI-ADK Data Team