| name | moai-baas-railway-ext |
| version | 4.0.0 |
| created | Tue Nov 11 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| updated | Thu Nov 13 2025 00:00:00 GMT+0000 (Coordinated Universal Time) |
| status | stable |
| description | Enterprise Railway Full-Stack Platform with AI-powered container orchestration, Context7 integration, and intelligent deployment automation for scalable modern applications |
| keywords | railway, full-stack, container-deployment, ci-cd, database-provisioning, auto-scaling, context7-integration, ai-orchestration, production-deployment |
| allowed-tools | Read, Bash, Write, Edit, Glob, Grep, WebFetch, mcp__context7__resolve-library-id, mcp__context7__get-library-docs |
Enterprise Railway Full-Stack Platform Expert v4.0.0
Skill Metadata
| Field | Value |
|---|---|
| Skill Name | moai-baas-railway-ext |
| Version | 4.0.0 (2025-11-13) |
| Tier | Enterprise Deployment Platform Expert |
| AI-Powered | ✅ Context7 Integration, Intelligent Architecture |
| Auto-load | On demand when Railway keywords detected |
What It Does
Enterprise Railway Full-Stack Platform expert with AI-powered container orchestration, Context7 integration, and intelligent deployment automation for scalable modern applications.
Revolutionary v4.0.0 capabilities:
- 🤖 AI-Powered Railway Architecture using Context7 MCP for latest deployment patterns
- 📊 Intelligent Container Orchestration with automated scaling and optimization
- 🚀 Real-time Performance Analytics with AI-driven deployment insights
- 🔗 Enterprise CI/CD Integration with zero-configuration pipeline automation
- 📈 Predictive Cost Analysis with usage forecasting and resource optimization
When to Use
Automatic triggers:
- Railway deployment architecture and container orchestration discussions
- Full-stack application development and database integration
- CI/CD pipeline setup and automated deployment strategies
- Multi-region deployment and scaling optimization
Manual invocation:
- Designing enterprise Railway architectures with optimal container configuration
- Implementing automated CI/CD pipelines with GitHub integration
- Planning full-stack application migrations to Railway
- Optimizing costs and auto-scaling configuration
Quick Reference (Level 1)
Railway Full-Stack Platform (November 2025)
Core Features Overview
- Container Deployment: Docker container deployment from GitHub
- Database Provisioning: PostgreSQL, MongoDB, Redis with automatic setup
- Multi-Region Deployment: 4+ global regions for optimal latency
- Git-Based CI/CD: Automated deployments from Git commits
- Background Jobs: Scheduled tasks and job processing
- One-Click Rollback: Instant deployment history and rollback
Supported Services
- Applications: Node.js, Python, Ruby, Go, Rust, Java, PHP
- Databases: PostgreSQL, MongoDB, Redis, MySQL
- Static Sites: Next.js, React, Vue, Angular, Hugo
- Background Workers: Bull queue, Celery, Sidekiq integration
- File Storage: Integrated with cloud storage providers
Key Benefits
- Zero Infrastructure Management: No server configuration required
- Developer-Friendly: Focus on code, not deployment complexity
- Auto-Scaling: Automatic scaling based on traffic and load
- Cost Controls: Built-in spending limits and monitoring
Performance Characteristics
- Cold Start: < 2 seconds for container spin-up
- Scaling: Instant horizontal and vertical scaling
- Database Performance: Optimized configurations for each database type
- Global Latency: < 50ms in major regions
Core Implementation (Level 2)
Railway Architecture Intelligence
# AI-powered Railway architecture optimization with Context7
class RailwayArchitectOptimizer:
def __init__(self):
self.context7_client = Context7Client()
self.container_analyzer = ContainerAnalyzer()
self.scaling_optimizer = ScalingOptimizer()
async def design_optimal_railway_architecture(self,
requirements: ApplicationRequirements) -> RailwayArchitecture:
"""Design optimal Railway architecture using AI analysis."""
# Get latest Railway and containerization documentation via Context7
railway_docs = await self.context7_client.get_library_docs(
context7_library_id='/railway/docs',
topic="container deployment ci-cd scaling optimization 2025",
tokens=3000
)
containerization_docs = await self.context7_client.get_library_docs(
context7_library_id='/docker/docs',
topic="optimization best practices orchestration 2025",
tokens=2000
)
# Optimize container configuration
container_optimization = self.container_analyzer.optimize_configuration(
requirements.application_stack,
containerization_docs
)
# Design scaling strategy
scaling_strategy = self.scaling_optimizer.design_scaling_strategy(
requirements.traffic_patterns,
requirements.performance_requirements,
railway_docs
)
return RailwayArchitecture(
application_services=self._design_application_services(requirements),
database_services=self._design_database_services(requirements),
container_configuration=container_optimization,
scaling_strategy=scaling_strategy,
deployment_pipeline=self._design_cicd_pipeline(requirements),
monitoring_setup=self._setup_monitoring(),
cost_analysis=self._analyze_pricing_model(requirements)
)
Multi-Service Deployment Configuration
# Railway multi-service application configuration
version: "1.0"
services:
frontend:
build:
dockerfile: Dockerfile.frontend
context: .
environment:
- NEXT_PUBLIC_API_URL=${API_URL}
- NODE_ENV=production
deploy:
replicas: 2
memory: 512Mi
cpu: 0.5
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:3000/health"]
interval: 30s
timeout: 10s
retries: 3
backend:
build:
dockerfile: Dockerfile.backend
context: .
environment:
- DATABASE_URL=${DATABASE_URL}
- REDIS_URL=${REDIS_URL}
- JWT_SECRET=${JWT_SECRET}
deploy:
replicas: 3
memory: 1Gi
cpu: 1.0
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/api/health"]
interval: 30s
timeout: 10s
retries: 3
worker:
build:
dockerfile: Dockerfile.worker
context: .
environment:
- DATABASE_URL=${DATABASE_URL}
- REDIS_URL=${REDIS_URL}
deploy:
replicas: 1
memory: 512Mi
cpu: 0.5
postgres:
image: "postgres:16-alpine"
environment:
- POSTGRES_USER=${POSTGRES_USER}
- POSTGRES_PASSWORD=${POSTGRES_PASSWORD}
- POSTGRES_DB=${POSTGRES_DB}
volume_mounts:
- mountPath: /var/lib/postgresql/data
name: postgres-data
deploy:
memory: 2Gi
cpu: 1.0
redis:
image: "redis:7-alpine"
deploy:
memory: 512Mi
cpu: 0.5
CI/CD Pipeline Integration
# GitHub Actions workflow for Railway deployment
name: Deploy to Railway
on:
push:
branches: [main, develop]
pull_request:
branches: [main]
jobs:
test:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Setup Node.js
uses: actions/setup-node@v4
with:
node-version: '20'
cache: 'npm'
- name: Install dependencies
run: npm ci
- name: Run tests
run: npm test
- name: Run E2E tests
run: npm run test:e2e
deploy:
needs: test
runs-on: ubuntu-latest
if: github.ref == 'refs/heads/main'
steps:
- uses: actions/checkout@v4
- name: Install Railway CLI
run: npm install -g @railway/cli
- name: Deploy to Railway
env:
RAILWAY_TOKEN: ${{ secrets.RAILWAY_TOKEN }}
run: |
railway login --token $RAILWAY_TOKEN
railway up --service frontend,backend,worker
Advanced Implementation (Level 3)
Advanced Scaling Strategies
class RailwayScalingManager:
def __init__(self):
self.railway_client = RailwayClient()
self.metrics_analyzer = MetricsAnalyzer()
self.cost_optimizer = CostOptimizer()
async def implement_intelligent_scaling(self,
project_id: str,
scaling_config: ScalingConfiguration) -> ScalingImplementation:
"""Implement intelligent auto-scaling for Railway services."""
# Analyze current usage patterns
usage_analysis = await self.metrics_analyzer.analyze_usage_patterns(
project_id, timeframe="7d"
)
# Configure predictive scaling
predictive_config = self._configure_predictive_scaling(
usage_analysis,
scaling_config
)
# Set up cost optimization
cost_optimization = self.cost_optimizer.optimize_scaling_costs(
predictive_config,
scaling_config.budget_constraints
)
return ScalingImplementation(
scaling_rules=self._create_scaling_rules(predictive_config),
monitoring_setup=self._setup_scaling_monitoring(),
cost_controls=cost_optimization,
performance_alerts=self._configure_performance_alerts()
)
Database Optimization Patterns
// Railway PostgreSQL optimization with connection pooling
import { Pool } from 'pg';
// Production-ready database configuration
const productionPool = new Pool({
connectionString: process.env.DATABASE_URL,
ssl: { rejectUnauthorized: false },
// Optimized for Railway's containerized environment
max: 20, // Maximum connections in pool
min: 5, // Minimum connections to maintain
idleTimeoutMillis: 30000, // Close idle connections after 30s
connectionTimeoutMillis: 2000, // Give up connecting after 2s
statement_timeout: 10000, // Kill slow queries after 10s
// Connection retry logic
retry: 3,
retryDelay: 1000,
});
// Application database service
export class DatabaseService {
private pool = productionPool;
async query<T>(text: string, params?: any[]): Promise<T[]> {
const start = Date.now();
const client = await this.pool.connect();
try {
const result = await client.query(text, params);
const duration = Date.now() - start;
// Log slow queries for optimization
if (duration > 1000) {
console.warn('Slow query detected:', {
query: text,
duration,
rowCount: result.rowCount
});
}
return result.rows;
} finally {
client.release();
}
}
async transaction<T>(callback: (client: any) => Promise<T>): Promise<T> {
const client = await this.pool.connect();
try {
await client.query('BEGIN');
const result = await callback(client);
await client.query('COMMIT');
return result;
} catch (error) {
await client.query('ROLLBACK');
throw error;
} finally {
client.release();
}
}
}
// Health check endpoint
app.get('/api/health', async (req, res) => {
try {
await db.query('SELECT 1');
res.status(200).json({
status: 'healthy',
timestamp: new Date().toISOString(),
database: 'connected'
});
} catch (error) {
res.status(503).json({
status: 'unhealthy',
timestamp: new Date().toISOString(),
database: 'disconnected'
});
}
});
Environment Management
class RailwayEnvironmentManager:
def __init__(self):
self.railway_client = RailwayClient()
self.config_manager = ConfigurationManager()
def setup_production_environment(self, project_id: str, config: EnvironmentConfig) -> EnvironmentSetup:
"""Configure production environment with best practices."""
# Set up production variables
production_vars = {
# Application configuration
'NODE_ENV': 'production',
'LOG_LEVEL': 'info',
# Database configuration
'DATABASE_URL': config.database_url,
'DATABASE_POOL_SIZE': '20',
'DATABASE_TIMEOUT': '10000',
# Security configuration
'JWT_SECRET': config.jwt_secret,
'ENCRYPTION_KEY': config.encryption_key,
'CORS_ORIGIN': config.frontend_url,
# External services
'REDIS_URL': config.redis_url,
'EMAIL_SERVICE_API_KEY': config.email_api_key,
# Monitoring and observability
'SENTRY_DSN': config.sentry_dsn,
'LOGTAIL_SOURCE_TOKEN': config.logtail_token
}
# Configure environment variables
env_setup = self.railway_client.set_environment_variables(
project_id, production_vars
)
return EnvironmentSetup(
variables=production_vars,
security_config=self._configure_security(),
monitoring_config=self._configure_monitoring(),
backup_config=self._configure_backups()
)
Reference & Integration (Level 4)
API Reference
Core Railway Operations
deploy_service(project_id, service_config)- Deploy servicecreate_database(project_id, db_type)- Provision databasescale_service(service_id, replicas, resources)- Scale servicerollback_deployment(service_id, deployment_id)- Rollback deploymentset_environment_variables(project_id, variables)- Set environment variables
Context7 Integration
get_latest_railway_documentation()- Official Railway docs via Context7analyze_container_optimization()- Container best practices via Context7optimize_deployment_strategy()- Deployment patterns via Context7
Best Practices (November 2025)
DO
- Use separate environments for development, staging, and production
- Implement comprehensive health checks for all services
- Configure proper logging and monitoring for observability
- Use connection pooling for database connections
- Set up automated testing before deployments
- Monitor costs and implement spending limits
- Use volume mounts for persistent data storage
- Implement proper error handling and retry logic
DON'T
- Hardcode environment variables in application code
- Skip health checks and monitoring setup
- Use production database for development testing
- Ignore scaling limits and cost controls
- Deploy without proper testing
- Forget to implement backup strategies
- Overprovision resources without optimization
- Skip security configuration for production
Works Well With
moai-baas-foundation(Enterprise BaaS architecture patterns)moai-domain-backend(Backend deployment patterns)moai-domain-devops(DevOps and CI/CD workflows)moai-essentials-perf(Performance optimization)moai-foundation-trust(Security and compliance)moai-baas-vercel-ext(Frontend deployment comparison)moai-baas-neon-ext(PostgreSQL database integration)moai-domain-database(Database optimization)
Changelog
- v4.0.0 (2025-11-13): Complete Enterprise v4.0 rewrite with 40% content reduction, 4-layer Progressive Disclosure structure, Context7 integration, November 2025 Railway platform updates, and advanced deployment automation
- v2.0.0 (2025-11-11): Complete metadata structure, deployment patterns, CI/CD integration
- v1.0.0 (2025-11-11): Initial Railway full-stack platform
End of Skill | Updated 2025-11-13
Security & Compliance
Container Security
- Secure base images and vulnerability scanning
- Runtime security monitoring and threat detection
- Network isolation and firewall configuration
- Secret management with encrypted environment variables
Compliance Management
- GDPR compliance with data protection measures
- SOC2 Type II security controls
- Automated security scanning and patching
- Comprehensive audit logging and monitoring
End of Enterprise Railway Full-Stack Platform Expert v4.0.0