Claude Code Plugins

Community-maintained marketplace

Feedback

moai-cloud-gcp-advanced

@modu-ai/moai-adk
297
0

Advanced GCP patterns for Cloud Run, Vertex AI, BigQuery, and GKE

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name moai-cloud-gcp-advanced
version 4.0.0
updated Thu Nov 20 2025 00:00:00 GMT+0000 (Coordinated Universal Time)
status stable
tier specialization
description Advanced GCP patterns for Cloud Run, Vertex AI, BigQuery, and GKE
allowed-tools Read, Bash, WebSearch, WebFetch

Google Cloud Advanced Architectures

Enterprise Serverless, ML, and Analytics Patterns

Focus: Cloud Run Gen2, Vertex AI Pipelines, BigQuery Streaming, GKE
Stack: Python, Terraform, Docker, Kubeflow


Overview

Production-grade patterns for scalable GCP architectures.

Core Services

  • Compute: Cloud Run (Serverless Containers), GKE (Kubernetes)
  • ML: Vertex AI (Training & Serving), AutoML
  • Data: BigQuery (Analytics), Pub/Sub (Streaming)
  • Security: VPC Service Controls, IAM Workload Identity

Compute Selection Guide

Service Best For Scaling Cost Model
Cloud Run Microservices, APIs 0 to N Per request
GKE Complex Stateful Apps Cluster Autoscaler Per node
Cloud Functions Event-driven Triggers Per request Per invocation
App Engine Monolithic Web Apps Auto Per instance

Implementation Patterns

1. Cloud Run Gen2 Deployment

Traffic splitting and revision management.

# service.yaml
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
  name: api-service
spec:
  template:
    metadata:
      annotations:
        autoscaling.knative.dev/minScale: "1"
        autoscaling.knative.dev/maxScale: "100"
    spec:
      containers:
        - image: gcr.io/project/api:v2
          resources:
            limits:
              cpu: "1000m"
              memory: "512Mi"
          env:
            - name: DB_HOST
              valueFrom:
                secretKeyRef:
                  name: db-secret
                  key: host
  traffic:
    - percent: 10
      revisionName: api-service-v2
    - percent: 90
      revisionName: api-service-v1

Deploy command:

gcloud run services replace service.yaml --region us-central1

2. Vertex AI Training Pipeline

Custom training job with Python SDK.

from google.cloud import aiplatform

def submit_training_job(
    project_id: str,
    display_name: str,
    container_uri: str,
    model_serving_container_image_uri: str,
):
    aiplatform.init(project=project_id, location="us-central1")

    job = aiplatform.CustomContainerTrainingJob(
        display_name=display_name,
        container_uri=container_uri,
        model_serving_container_image_uri=model_serving_container_image_uri,
    )

    model = job.run(
        dataset=None, # Or provide dataset
        model_display_name="my-model",
        args=["--epochs=10"],
        replica_count=1,
        machine_type="n1-standard-4",
        accelerator_type="NVIDIA_TESLA_T4",
        accelerator_count=1,
    )

    return model

3. BigQuery Streaming Insert

High-throughput data ingestion.

from google.cloud import bigquery

def stream_data(dataset_id, table_id, rows):
    client = bigquery.Client()
    table_ref = client.dataset(dataset_id).table(table_id)

    errors = client.insert_rows_json(table_ref, rows)

    if errors:
        print(f"Encountered errors: {errors}")
    else:
        print("New rows have been added.")

4. GKE Workload Identity

Secure access to GCP APIs from Kubernetes.

# 1. Create Google Service Account (GSA)
gcloud iam service-accounts create gke-sa

# 2. Bind GSA to K8s Service Account (KSA)
gcloud iam service-accounts add-iam-policy-binding \
  --role roles/iam.workloadIdentityUser \
  --member "serviceAccount:PROJECT_ID.svc.id.goog[NAMESPACE/KSA_NAME]" \
  gke-sa@PROJECT_ID.iam.gserviceaccount.com

# 3. Annotate KSA
kubectl annotate serviceaccount KSA_NAME \
  --namespace NAMESPACE \
  iam.gke.io/gcp-service-account=gke-sa@PROJECT_ID.iam.gserviceaccount.com

Infrastructure as Code (Terraform)

VPC & Cloud Run Connector

resource "google_vpc_access_connector" "connector" {
  name          = "vpc-conn"
  region        = "us-central1"
  ip_cidr_range = "10.8.0.0/28"
  network       = "default"
}

resource "google_cloud_run_service" "default" {
  name     = "my-service"
  location = "us-central1"

  template {
    spec {
      containers {
        image = "gcr.io/google-samples/hello-app:1.0"
      }
    }
    metadata {
      annotations = {
        "run.googleapis.com/vpc-access-connector" = google_vpc_access_connector.connector.name
      }
    }
  }
}

Observability

Cloud Logging (Python)

import google.cloud.logging

client = google.cloud.logging.Client()
client.setup_logging()

import logging
logging.info("Structured log message", extra={
    "json_fields": {"custom_key": "value"}
})

Validation Checklist

Compute:

  • Cloud Run min instances set (cold start prevention)
  • GKE Workload Identity configured
  • VPC Connector enabled for private access

Data & ML:

  • BigQuery partitioning enabled
  • Vertex AI model registry used
  • Pub/Sub dead letter queues configured

Security:

  • Least privilege IAM roles assigned
  • Secrets managed via Secret Manager
  • Public access restricted (ingress control)

Related Skills

  • moai-domain-cloud: Cloud fundamentals
  • moai-domain-ml: Machine Learning concepts
  • moai-security-devsecops: CI/CD security

Last Updated: 2025-11-20