| name | moon-dev-trading-agents |
| description | Master Moon Dev's Ai Agents Github with 48+ specialized agents, multi-exchange support, LLM abstraction, and autonomous trading capabilities across crypto markets |
Moon Dev's AI Trading Agents System
Expert knowledge for working with Moon Dev's experimental AI trading system that orchestrates 48+ specialized AI agents for cryptocurrency trading across Hyperliquid, Solana (BirdEye), Asterdex, and Extended Exchange.
When to Use This Skill
Use this skill when:
- Working with Moon Dev's trading agents repository
- Need to understand agent architecture and capabilities
- Running, modifying, or creating trading agents
- Configuring trading system, exchanges, or LLM providers
- Debugging trading operations or agent interactions
- Understanding backtesting with RBI agent
- Setting up new exchanges or strategies
Environment Setup Note
For New Users: This repo uses Python 3.10.9. If using conda, the README shows setting up an environment named tflow, but you can name it whatever you want. If you don't use conda, standard pip/venv works fine too.
Quick Start Commands
# Activate your Python environment (conda, venv, or whatever you use)
# Example with conda: conda activate tflow
# Example with venv: source venv/bin/activate
# Use whatever environment manager you prefer
# Run main orchestrator (controls multiple agents)
python src/main.py
# Run individual agent
python src/agents/trading_agent.py
python src/agents/risk_agent.py
python src/agents/rbi_agent.py
# Update requirements after adding packages
pip freeze > requirements.txt
Core Architecture
Directory Structure
src/
├── agents/ # 48+ specialized AI agents (<800 lines each)
├── models/ # LLM provider abstraction (ModelFactory)
├── strategies/ # User-defined trading strategies
├── scripts/ # Standalone utility scripts
├── data/ # Agent outputs, memory, analysis results
├── config.py # Global configuration
├── main.py # Main orchestrator loop
├── nice_funcs.py # Core trading utilities (~1,200 lines)
├── nice_funcs_hl.py # Hyperliquid-specific functions
├── nice_funcs_extended.py # Extended Exchange functions
└── ezbot.py # Legacy trading controller
Key Components
Agents (src/agents/)
- Each agent is standalone executable
- Uses ModelFactory for LLM access
- Stores outputs in src/data/[agent_name]/
- Under 800 lines (split if longer)
LLM Integration (src/models/)
- ModelFactory provides unified interface
- Supports: Claude, GPT-4, DeepSeek, Groq, Gemini, Ollama
- Pattern:
ModelFactory.create_model('anthropic')
Trading Utilities
nice_funcs.py: Core functions (Solana/BirdEye)nice_funcs_hl.py: Hyperliquid exchangenice_funcs_extended.py: Extended Exchange (X10)
Configuration
config.py: Trading settings, risk limits, agent behavior.env: API keys and secrets (never expose these)
Agent Categories
Trading: trading_agent, strategy_agent, risk_agent, copybot_agent
Market Analysis: sentiment_agent, whale_agent, funding_agent, liquidation_agent, chartanalysis_agent
Content: chat_agent, clips_agent, tweet_agent, video_agent, phone_agent
Research: rbi_agent (codes backtests from videos/PDFs), research_agent, websearch_agent
Specialized: sniper_agent, solana_agent, tx_agent, million_agent, polymarket_agent, compliance_agent, swarm_agent
See AGENTS.md for complete list with descriptions.
Common Workflows
1. Run Single Agent
# Activate your environment first
python src/agents/[agent_name].py
Each agent is standalone and can run independently.
2. Run Main Orchestrator
python src/main.py
Runs multiple agents in loop based on ACTIVE_AGENTS dict in main.py.
3. Change Exchange
Edit agent file or config:
EXCHANGE = "hyperliquid" # or "birdeye", "extended"
Then import corresponding functions:
if EXCHANGE == "hyperliquid":
from src import nice_funcs_hl as nf
elif EXCHANGE == "extended":
from src import nice_funcs_extended as nf
4. Switch AI Model
Edit src/config.py:
AI_MODEL = "claude-3-haiku-20240307" # Fast, cheap
# AI_MODEL = "claude-3-sonnet-20240229" # Balanced
# AI_MODEL = "claude-3-opus-20240229" # Most powerful
Or use ModelFactory per-agent:
from src.models.model_factory import ModelFactory
model = ModelFactory.create_model('deepseek') # or 'openai', 'groq', etc.
response = model.generate_response(system_prompt, user_content, temperature, max_tokens)
5. Backtest Strategy (RBI Agent)
python src/agents/rbi_agent.py
Provide: YouTube URL, PDF, or trading idea text → DeepSeek-R1 extracts strategy logic → Generates backtesting.py compatible code → Executes backtest, returns metrics
See WORKFLOWS.md for more examples.
Development Rules
CRITICAL Rules
- Keep files under 800 lines - split into new files if longer
- NEVER move files - can create new, but no moving without asking
- Use existing environment - don't create new virtual environments, use the one from initial setup
- Update requirements.txt after any pip install:
pip freeze > requirements.txt - Use real data only - never synthetic/fake data
- Minimal error handling - user wants to see errors, not over-engineered try/except
- Never expose API keys - don't show .env contents
Agent Development Pattern
Creating new agents:
# 1. Use ModelFactory for LLM
from src.models.model_factory import ModelFactory
model = ModelFactory.create_model('anthropic')
# 2. Store outputs in src/data/
output_dir = "src/data/my_agent/"
# 3. Make independently executable
if __name__ == "__main__":
# Standalone logic here
# 4. Follow naming: [purpose]_agent.py
# 5. Add to config.py if needed
Backtesting
- Use
backtesting.pylibrary (NOT built-in indicators) - Use
pandas_taortalibfor indicators - Sample data:
src/data/rbi/BTC-USD-15m.csv
Configuration Files
config.py: Trading settings
MONITORED_TOKENS,EXCLUDED_TOKENS- Position sizing:
usd_size,max_usd_order_size - Risk:
CASH_PERCENTAGE,MAX_LOSS_USD,MAX_GAIN_USD - Agent:
SLEEP_BETWEEN_RUNS_MINUTES,ACTIVE_AGENTS - AI:
AI_MODEL,AI_MAX_TOKENS,AI_TEMPERATURE
.env: Secrets (NEVER expose)
- Trading APIs:
BIRDEYE_API_KEY,MOONDEV_API_KEY,COINGECKO_API_KEY - AI:
ANTHROPIC_KEY,OPENAI_KEY,DEEPSEEK_KEY,GROQ_API_KEY,GEMINI_KEY - Blockchain:
SOLANA_PRIVATE_KEY,HYPER_LIQUID_ETH_PRIVATE_KEY,RPC_ENDPOINT - Extended:
X10_API_KEY,X10_PRIVATE_KEY,X10_PUBLIC_KEY,X10_VAULT_ID
Exchange Support
Hyperliquid (nice_funcs_hl.py)
- EVM-compatible perpetuals DEX
- Functions:
market_buy(),market_sell(),get_position(),close_position() - Leverage up to 50x
BirdEye/Solana (nice_funcs.py)
- Solana spot token data and trading
- Functions:
token_overview(),token_price(),get_ohlcv_data() - Real-time market data for 15,000+ tokens
Extended Exchange (nice_funcs_extended.py)
- StarkNet-based perpetuals (X10)
- Auto symbol conversion (BTC → BTC-USD)
- Leverage up to 20x
- Functions match Hyperliquid API for compatibility
See docs/hyperliquid.md, docs/extended_exchange.md for exchange-specific guides.
Data Flow Pattern
Config/Input → Agent Init → API Data Fetch → Data Parsing →
LLM Analysis (via ModelFactory) → Decision Output →
Result Storage (CSV/JSON in src/data/) → Optional Trade Execution
Common Tasks
Add new package:
# Make sure your environment is activated first
pip install package-name
pip freeze > requirements.txt
Read market data:
from src.nice_funcs import token_overview, get_ohlcv_data, token_price
overview = token_overview(token_address)
ohlcv = get_ohlcv_data(token_address, timeframe='1H', days_back=3)
price = token_price(token_address)
Execute trade (Hyperliquid):
from src import nice_funcs_hl as nf
nf.market_buy("BTC", usd_amount=100, leverage=10)
position = nf.get_position("BTC")
nf.close_position("BTC")
Execute trade (Extended):
from src import nice_funcs_extended as nf
nf.market_buy("BTC", usd_amount=100, leverage=15)
position = nf.get_position("BTC")
nf.close_position("BTC")
Git Operations
Current branch: main Main branch for PRs: main
Recent commits:
- dc55e90: websearch agent
- 921ead6: websearch_agent launched and rbi agent updated
- 6bb55c2: backtest dash
Modified files (current):
- .env_example
- src/agents/swarm_agent.py
- src/agents/trading_agent.py
- src/data/ohlcv_collector.py
Documentation
Main docs (docs/):
CLAUDE.md: Project overview and development guidelineshyperliquid.md,hyperliquid_setup.md: Hyperliquid exchangeextended_exchange.md: Extended Exchange (X10) setuprbi_agent.md: Research-Based Inference agentwebsearch_agent.md: Web search capabilitiesswarm_agent.md: Multi-agent coordination[agent_name].md: Individual agent docs
README files:
- Root
README.md: Project overview src/models/README.md: LLM provider guide
Risk Management
- Risk Agent runs FIRST before any trading decisions
- Circuit breakers:
MAX_LOSS_USD,MINIMUM_BALANCE_USD - AI confirmation for position-closing (configurable)
- Default loop: every 15 minutes (
SLEEP_BETWEEN_RUNS_MINUTES)
Philosophy
This is an experimental, educational project:
- No guarantees of profitability
- Open source and free
- YouTube-driven development
- Community-supported via Discord
- No official token (avoid scams)
Goal: Democratize AI agent development through practical trading examples.
Additional Resources
For complete agent list, see AGENTS.md For workflow examples, see WORKFLOWS.md For architecture details, see ARCHITECTURE.md
Built with 🌙 by Moon Dev
"Never over-engineer, always ship real trading systems."