Claude Code Plugins

Community-maintained marketplace

Feedback

sdd-artifact-rollout

@mosaan/releio
2
0

Guides SDD artifact implementation for NEW and EXISTING projects. Use for DDD glossary, context map, domain models, ADRs, user stories with acceptance criteria. For existing projects, supports gap analysis, code-to-spec reverse engineering, and phased migration. Triggers on SDD, spec-driven, artifact, glossary, context map, domain vision, ADR, legacy documentation, reverse engineering, existing project documentation, gap analysis.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name sdd-artifact-rollout
description Guides SDD artifact implementation for NEW and EXISTING projects. Use for DDD glossary, context map, domain models, ADRs, user stories with acceptance criteria. For existing projects, supports gap analysis, code-to-spec reverse engineering, and phased migration. Triggers on SDD, spec-driven, artifact, glossary, context map, domain vision, ADR, legacy documentation, reverse engineering, existing project documentation, gap analysis.

SDD Artifact Rollout

Implements the 5-phase rollout methodology for Specification-Driven Development artifact frameworks, enabling teams to create AI-ready specifications that drive code generation.

When to Use This Skill

新規プロジェクト

  • SDD/スペック駆動開発の導入
  • ドメイン用語集(Glossary)やユビキタス言語の作成
  • Bounded Context Mapの設計
  • 形式的受け入れ基準付きUser Storiesの構造化
  • ドメインモデル(Aggregate, Entity, Value Object)の構築
  • ADR(Architecture Decision Record)の確立

既存プロジェクト

  • 既存コードベースの包括的文書化
  • レガシープロジェクトへのSDD準拠アーティファクト追加
  • コードからGlossary/Domain Modelのリバースエンジニアリング
  • 既存APIからOpenAPI仕様書の生成
  • 技術的負債・設計判断の事後記録(ADR)
  • 文書化ギャップの診断と優先順位付け

Quick Start: Context Gathering

Before proceeding, gather these inputs from the user:

1. Domain: What is the target domain? (e.g., order management, billing)
2. Team: How many people? What roles? (PO, Tech Lead, Dev, QA, DevOps)
3. Timeline: Available weeks? (Standard: 12 weeks for full rollout)
4. Regulatory: Any compliance requirements? (affects Phase 5 depth)
5. Existing Artifacts: Any glossary, domain model, or specs already exist?
6. Project Type: NEW project or EXISTING codebase?

既存プロジェクト向けガイド

既存コードベースにSDD準拠のアーティファクトを導入する場合は、以下のガイドを参照:

ガイド 用途
ギャップ診断 現状分析、何が欠けているか診断、優先順位付け
リバースエンジニアリング コード→Glossary、コード→Domain Model、API→OpenAPI抽出
暗黙知の明示化 インタビュー手順、PR履歴分析、事後ADR作成
段階的移行ロードマップ MVP定義、移行計画、日常業務への組み込み

既存プロジェクトでの推奨フロー

1. ギャップ診断(何が欠けているか)
   ↓
2. 優先順位付け(どこから着手するか)
   ↓
3. MVP Level 1 作成(Vision, Glossary 15用語, Context Map)
   ↓
4. リバースエンジニアリング(コードから抽出)
   ↓
5. 暗黙知収集(インタビュー、事後ADR)
   ↓
6. 段階的に Level 2, 3 へ拡充

新規プロジェクト向け: Phase Overview (12-Week Standard)

Phase Weeks Focus Key Deliverables
1 1-2 Foundation Domain Vision, Glossary v0.1, Context Map
2 3-5 Requirements User Stories, Formal ACs, Feature Breakdown
3 6-8 Conceptual Design Domain Model, Events, Service Specs
4 8-10 Data & API Data Models, OpenAPI Specs, Code Skeleton
5 10-12 Operations ADRs, Validation Automation, CI/CD

Execution Flow

Phase 1: Foundation (Weeks 1-2)

Goal: Establish ubiquitous language and AI context foundation.

Deliverables:

  1. Domain Vision Statement (1-2 pages)
  2. Core Glossary v0.1 (20-30 terms in YAML)
  3. Bounded Context Map (3-5 contexts)

AI Usage: Heavy (glossary generation, context refinement)

For detailed templates and procedures, see phase-1-foundation.md.

Phase 2: Requirements (Weeks 3-5)

Goal: Structure user stories for AI code generation compatibility.

Deliverables:

  1. User Stories v1 (5-10 per sprint)
  2. Acceptance Criteria (formal + natural language)
  3. Feature Breakdown & Dependencies

AI Usage: Medium (story generation, AC refinement)

For detailed templates and procedures, see phase-2-requirements.md.

Phase 3: Conceptual Design (Weeks 6-8)

Goal: Develop domain models with explicit invariants.

Deliverables:

  1. Domain Model (Aggregates, Entities, Value Objects)
  2. Domain Events & Event Flow
  3. Service Specifications (Application/Domain)

AI Usage: Medium-High (code skeleton generation)

For detailed templates and procedures, see phase-3-domain-design.md.

Phase 4: Data & Implementation Design (Weeks 8-10)

Goal: Define data schemas and external interfaces.

Deliverables:

  1. Logical & Physical Data Models
  2. OpenAPI Specifications
  3. Implementation Code Skeleton

AI Usage: Heavy (code generation, schema inference)

For detailed templates and procedures, see phase-4-data-api.md.

Phase 5: Integration & Operations (Weeks 10-12)

Goal: Complete artifact lifecycle management with CI/CD integration.

Deliverables:

  1. ADRs for all major decisions
  2. Validation & Quality Check Automation
  3. CI/CD integration, deployment pipeline
  4. Artifact versioning & change management

AI Usage: Light (validation logic generation)

For detailed templates and procedures, see phase-5-ops-automation.md.

Validation at Each Phase

Before advancing to the next phase, verify:

  • All deliverables created and reviewed
  • Glossary terms used consistently across artifacts
  • Referential integrity checked (all referenced concepts defined)
  • Stakeholder approval obtained

For validation scripts and detailed checks, see validation.md.

Templates

AI prompt templates for each phase are provided in templates.md.

Checklists

Phase-by-phase implementation checklists are in checklist.md.

Success Factors

  1. Early Commitment: Team understands why documentation matters for AI
  2. Tool Simplicity: Start with Git + Markdown + YAML
  3. Iterative Refinement: Don't aim for perfect; iterate
  4. AI Usage Clarity: Define which stages use AI generation
  5. Feedback Loop: Implementation feedback flows back to artifacts

Required Roles

Role Responsibilities
Domain Expert / PO Glossary, Business Rules, Story validation
Architect / Tech Lead Context Map, ADR, Framework design
Senior Developer Domain Model, code generation
Mid Developer Feature implementation, story completion
QA / Tester AC validation, test case generation
DevOps CI/CD, artifact versioning, validation automation

Recommended Repository Structure

project-repo/
├── domain/
│   ├── vision.md
│   └── glossary.yaml
├── architecture/
│   ├── context-map.md
│   └── strategic-rules.md
├── requirements/
│   ├── user-stories.md
│   └── features/
├── domain-design/
│   ├── domain-model.ts
│   └── aggregates/
├── data-model/
│   ├── schema.sql
│   └── migrations/
├── api-specs/
│   └── openapi.yaml
├── adr/
│   └── ADR-001-*.md
├── ai/
│   └── prompt-templates.yaml
└── scripts/
    └── validate-artifacts.sh

Adaptation Guidelines

新規プロジェクト

  • Startup (small team): Focus on Phase 1-2, minimal Phase 5
  • Growth-stage: Full 5-phase rollout over 12 weeks
  • Enterprise: Add regulatory artifacts, extend Phase 5

既存プロジェクト

  • レガシー(文書なし): ギャップ診断から開始、MVP Level 1を最優先
  • 部分的に文書あり: ギャップ診断で欠けている部分を特定、優先順位付けして補完
  • リファクタリング予定: リバースエンジニアリングでDomain Model抽出を優先
  • 新メンバー頻繁: Glossary, Domain Vision, Context Mapを最優先

Next Steps

After gathering context, proceed to Phase 1:

  1. Read phase-1-foundation.md
  2. Create Domain Vision Statement using template
  3. Generate initial Glossary with AI assistance
  4. Draft Bounded Context Map
  5. Validate and get approval before Phase 2