| name | sdd-artifact-rollout |
| description | Guides SDD artifact implementation for NEW and EXISTING projects. Use for DDD glossary, context map, domain models, ADRs, user stories with acceptance criteria. For existing projects, supports gap analysis, code-to-spec reverse engineering, and phased migration. Triggers on SDD, spec-driven, artifact, glossary, context map, domain vision, ADR, legacy documentation, reverse engineering, existing project documentation, gap analysis. |
SDD Artifact Rollout
Implements the 5-phase rollout methodology for Specification-Driven Development artifact frameworks, enabling teams to create AI-ready specifications that drive code generation.
When to Use This Skill
新規プロジェクト
- SDD/スペック駆動開発の導入
- ドメイン用語集(Glossary)やユビキタス言語の作成
- Bounded Context Mapの設計
- 形式的受け入れ基準付きUser Storiesの構造化
- ドメインモデル(Aggregate, Entity, Value Object)の構築
- ADR(Architecture Decision Record)の確立
既存プロジェクト
- 既存コードベースの包括的文書化
- レガシープロジェクトへのSDD準拠アーティファクト追加
- コードからGlossary/Domain Modelのリバースエンジニアリング
- 既存APIからOpenAPI仕様書の生成
- 技術的負債・設計判断の事後記録(ADR)
- 文書化ギャップの診断と優先順位付け
Quick Start: Context Gathering
Before proceeding, gather these inputs from the user:
1. Domain: What is the target domain? (e.g., order management, billing)
2. Team: How many people? What roles? (PO, Tech Lead, Dev, QA, DevOps)
3. Timeline: Available weeks? (Standard: 12 weeks for full rollout)
4. Regulatory: Any compliance requirements? (affects Phase 5 depth)
5. Existing Artifacts: Any glossary, domain model, or specs already exist?
6. Project Type: NEW project or EXISTING codebase?
既存プロジェクト向けガイド
既存コードベースにSDD準拠のアーティファクトを導入する場合は、以下のガイドを参照:
| ガイド | 用途 |
|---|---|
| ギャップ診断 | 現状分析、何が欠けているか診断、優先順位付け |
| リバースエンジニアリング | コード→Glossary、コード→Domain Model、API→OpenAPI抽出 |
| 暗黙知の明示化 | インタビュー手順、PR履歴分析、事後ADR作成 |
| 段階的移行ロードマップ | MVP定義、移行計画、日常業務への組み込み |
既存プロジェクトでの推奨フロー
1. ギャップ診断(何が欠けているか)
↓
2. 優先順位付け(どこから着手するか)
↓
3. MVP Level 1 作成(Vision, Glossary 15用語, Context Map)
↓
4. リバースエンジニアリング(コードから抽出)
↓
5. 暗黙知収集(インタビュー、事後ADR)
↓
6. 段階的に Level 2, 3 へ拡充
新規プロジェクト向け: Phase Overview (12-Week Standard)
| Phase | Weeks | Focus | Key Deliverables |
|---|---|---|---|
| 1 | 1-2 | Foundation | Domain Vision, Glossary v0.1, Context Map |
| 2 | 3-5 | Requirements | User Stories, Formal ACs, Feature Breakdown |
| 3 | 6-8 | Conceptual Design | Domain Model, Events, Service Specs |
| 4 | 8-10 | Data & API | Data Models, OpenAPI Specs, Code Skeleton |
| 5 | 10-12 | Operations | ADRs, Validation Automation, CI/CD |
Execution Flow
Phase 1: Foundation (Weeks 1-2)
Goal: Establish ubiquitous language and AI context foundation.
Deliverables:
- Domain Vision Statement (1-2 pages)
- Core Glossary v0.1 (20-30 terms in YAML)
- Bounded Context Map (3-5 contexts)
AI Usage: Heavy (glossary generation, context refinement)
For detailed templates and procedures, see phase-1-foundation.md.
Phase 2: Requirements (Weeks 3-5)
Goal: Structure user stories for AI code generation compatibility.
Deliverables:
- User Stories v1 (5-10 per sprint)
- Acceptance Criteria (formal + natural language)
- Feature Breakdown & Dependencies
AI Usage: Medium (story generation, AC refinement)
For detailed templates and procedures, see phase-2-requirements.md.
Phase 3: Conceptual Design (Weeks 6-8)
Goal: Develop domain models with explicit invariants.
Deliverables:
- Domain Model (Aggregates, Entities, Value Objects)
- Domain Events & Event Flow
- Service Specifications (Application/Domain)
AI Usage: Medium-High (code skeleton generation)
For detailed templates and procedures, see phase-3-domain-design.md.
Phase 4: Data & Implementation Design (Weeks 8-10)
Goal: Define data schemas and external interfaces.
Deliverables:
- Logical & Physical Data Models
- OpenAPI Specifications
- Implementation Code Skeleton
AI Usage: Heavy (code generation, schema inference)
For detailed templates and procedures, see phase-4-data-api.md.
Phase 5: Integration & Operations (Weeks 10-12)
Goal: Complete artifact lifecycle management with CI/CD integration.
Deliverables:
- ADRs for all major decisions
- Validation & Quality Check Automation
- CI/CD integration, deployment pipeline
- Artifact versioning & change management
AI Usage: Light (validation logic generation)
For detailed templates and procedures, see phase-5-ops-automation.md.
Validation at Each Phase
Before advancing to the next phase, verify:
- All deliverables created and reviewed
- Glossary terms used consistently across artifacts
- Referential integrity checked (all referenced concepts defined)
- Stakeholder approval obtained
For validation scripts and detailed checks, see validation.md.
Templates
AI prompt templates for each phase are provided in templates.md.
Checklists
Phase-by-phase implementation checklists are in checklist.md.
Success Factors
- Early Commitment: Team understands why documentation matters for AI
- Tool Simplicity: Start with Git + Markdown + YAML
- Iterative Refinement: Don't aim for perfect; iterate
- AI Usage Clarity: Define which stages use AI generation
- Feedback Loop: Implementation feedback flows back to artifacts
Required Roles
| Role | Responsibilities |
|---|---|
| Domain Expert / PO | Glossary, Business Rules, Story validation |
| Architect / Tech Lead | Context Map, ADR, Framework design |
| Senior Developer | Domain Model, code generation |
| Mid Developer | Feature implementation, story completion |
| QA / Tester | AC validation, test case generation |
| DevOps | CI/CD, artifact versioning, validation automation |
Recommended Repository Structure
project-repo/
├── domain/
│ ├── vision.md
│ └── glossary.yaml
├── architecture/
│ ├── context-map.md
│ └── strategic-rules.md
├── requirements/
│ ├── user-stories.md
│ └── features/
├── domain-design/
│ ├── domain-model.ts
│ └── aggregates/
├── data-model/
│ ├── schema.sql
│ └── migrations/
├── api-specs/
│ └── openapi.yaml
├── adr/
│ └── ADR-001-*.md
├── ai/
│ └── prompt-templates.yaml
└── scripts/
└── validate-artifacts.sh
Adaptation Guidelines
新規プロジェクト
- Startup (small team): Focus on Phase 1-2, minimal Phase 5
- Growth-stage: Full 5-phase rollout over 12 weeks
- Enterprise: Add regulatory artifacts, extend Phase 5
既存プロジェクト
- レガシー(文書なし): ギャップ診断から開始、MVP Level 1を最優先
- 部分的に文書あり: ギャップ診断で欠けている部分を特定、優先順位付けして補完
- リファクタリング予定: リバースエンジニアリングでDomain Model抽出を優先
- 新メンバー頻繁: Glossary, Domain Vision, Context Mapを最優先
Next Steps
After gathering context, proceed to Phase 1:
- Read phase-1-foundation.md
- Create Domain Vision Statement using template
- Generate initial Glossary with AI assistance
- Draft Bounded Context Map
- Validate and get approval before Phase 2