Claude Code Plugins

Community-maintained marketplace

Feedback

flow-nexus-swarm

@mrkingsleyobi/jobnaut
0
0

Cloud-based AI swarm deployment and event-driven workflow automation with Flow Nexus platform

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name flow-nexus-swarm
description Cloud-based AI swarm deployment and event-driven workflow automation with Flow Nexus platform
category orchestration
tags swarm, workflow, cloud, agents, automation, message-queue
version 1.0.0
requires flow-nexus MCP server, Active Flow Nexus account (register at flow-nexus.ruv.io)

Flow Nexus Swarm & Workflow Orchestration

Deploy and manage cloud-based AI agent swarms with event-driven workflow automation, message queue processing, and intelligent agent coordination.

📋 Table of Contents

  1. Overview
  2. Swarm Management
  3. Workflow Automation
  4. Agent Orchestration
  5. Templates & Patterns
  6. Advanced Features
  7. Best Practices

Overview

Flow Nexus provides cloud-based orchestration for AI agent swarms with:

  • Multi-topology Support: Hierarchical, mesh, ring, and star architectures
  • Event-driven Workflows: Message queue processing with async execution
  • Template Library: Pre-built swarm configurations for common use cases
  • Intelligent Agent Assignment: Vector similarity matching for optimal agent selection
  • Real-time Monitoring: Comprehensive metrics and audit trails
  • Scalable Infrastructure: Cloud-based execution with auto-scaling

Swarm Management

Initialize Swarm

Create a new swarm with specified topology and configuration:

mcp__flow -
  nexus__swarm_init({
    topology: 'hierarchical', // Options: mesh, ring, star, hierarchical
    maxAgents: 8,
    strategy: 'balanced', // Options: balanced, specialized, adaptive
  });

Topology Guide:

  • Hierarchical: Tree structure with coordinator nodes (best for complex projects)
  • Mesh: Peer-to-peer collaboration (best for research and analysis)
  • Ring: Circular coordination (best for sequential workflows)
  • Star: Centralized hub (best for simple delegation)

Strategy Guide:

  • Balanced: Equal distribution of workload across agents
  • Specialized: Agents focus on specific expertise areas
  • Adaptive: Dynamic adjustment based on task complexity

Spawn Agents

Add specialized agents to the swarm:

mcp__flow -
  nexus__agent_spawn({
    type: 'researcher', // Options: researcher, coder, analyst, optimizer, coordinator
    name: 'Lead Researcher',
    capabilities: ['web_search', 'analysis', 'summarization'],
  });

Agent Types:

  • Researcher: Information gathering, web search, analysis
  • Coder: Code generation, refactoring, implementation
  • Analyst: Data analysis, pattern recognition, insights
  • Optimizer: Performance tuning, resource optimization
  • Coordinator: Task delegation, progress tracking, integration

Orchestrate Tasks

Distribute tasks across the swarm:

mcp__flow -
  nexus__task_orchestrate({
    task: 'Build a REST API with authentication and database integration',
    strategy: 'parallel', // Options: parallel, sequential, adaptive
    maxAgents: 5,
    priority: 'high', // Options: low, medium, high, critical
  });

Execution Strategies:

  • Parallel: Maximum concurrency for independent subtasks
  • Sequential: Step-by-step execution with dependencies
  • Adaptive: AI-powered strategy selection based on task analysis

Monitor & Scale Swarms

// Get detailed swarm status
mcp__flow -
  nexus__swarm_status({
    swarm_id: 'optional-id', // Uses active swarm if not provided
  });

// List all active swarms
mcp__flow -
  nexus__swarm_list({
    status: 'active', // Options: active, destroyed, all
  });

// Scale swarm up or down
mcp__flow -
  nexus__swarm_scale({
    target_agents: 10,
    swarm_id: 'optional-id',
  });

// Gracefully destroy swarm
mcp__flow -
  nexus__swarm_destroy({
    swarm_id: 'optional-id',
  });

Workflow Automation

Create Workflow

Define event-driven workflows with message queue processing:

mcp__flow -
  nexus__workflow_create({
    name: 'CI/CD Pipeline',
    description: 'Automated testing, building, and deployment',
    steps: [
      {
        id: 'test',
        action: 'run_tests',
        agent: 'tester',
        parallel: true,
      },
      {
        id: 'build',
        action: 'build_app',
        agent: 'builder',
        depends_on: ['test'],
      },
      {
        id: 'deploy',
        action: 'deploy_prod',
        agent: 'deployer',
        depends_on: ['build'],
      },
    ],
    triggers: ['push_to_main', 'manual_trigger'],
    metadata: {
      priority: 10,
      retry_policy: 'exponential_backoff',
    },
  });

Workflow Features:

  • Dependency Management: Define step dependencies with depends_on
  • Parallel Execution: Set parallel: true for concurrent steps
  • Event Triggers: GitHub events, schedules, manual triggers
  • Retry Policies: Automatic retry on transient failures
  • Priority Queuing: High-priority workflows execute first

Execute Workflow

Run workflows synchronously or asynchronously:

mcp__flow -
  nexus__workflow_execute({
    workflow_id: 'workflow_id',
    input_data: {
      branch: 'main',
      commit: 'abc123',
      environment: 'production',
    },
    async: true, // Queue-based execution for long-running workflows
  });

Execution Modes:

  • Sync (async: false): Immediate execution, wait for completion
  • Async (async: true): Message queue processing, non-blocking

Monitor Workflows

// Get workflow status and metrics
mcp__flow -
  nexus__workflow_status({
    workflow_id: 'id',
    execution_id: 'specific-run-id', // Optional
    include_metrics: true,
  });

// List workflows with filters
mcp__flow -
  nexus__workflow_list({
    status: 'running', // Options: running, completed, failed, pending
    limit: 10,
    offset: 0,
  });

// Get complete audit trail
mcp__flow -
  nexus__workflow_audit_trail({
    workflow_id: 'id',
    limit: 50,
    start_time: '2025-01-01T00:00:00Z',
  });

Agent Assignment

Intelligently assign agents to workflow tasks:

mcp__flow -
  nexus__workflow_agent_assign({
    task_id: 'task_id',
    agent_type: 'coder', // Preferred agent type
    use_vector_similarity: true, // AI-powered capability matching
  });

Vector Similarity Matching:

  • Analyzes task requirements and agent capabilities
  • Finds optimal agent based on past performance
  • Considers workload and availability

Queue Management

Monitor and manage message queues:

mcp__flow -
  nexus__workflow_queue_status({
    queue_name: 'optional-specific-queue',
    include_messages: true, // Show pending messages
  });

Agent Orchestration

Full-Stack Development Pattern

// 1. Initialize swarm with hierarchical topology
mcp__flow -
  nexus__swarm_init({
    topology: 'hierarchical',
    maxAgents: 8,
    strategy: 'specialized',
  });

// 2. Spawn specialized agents
mcp__flow - nexus__agent_spawn({ type: 'coordinator', name: 'Project Manager' });
mcp__flow - nexus__agent_spawn({ type: 'coder', name: 'Backend Developer' });
mcp__flow - nexus__agent_spawn({ type: 'coder', name: 'Frontend Developer' });
mcp__flow - nexus__agent_spawn({ type: 'coder', name: 'Database Architect' });
mcp__flow - nexus__agent_spawn({ type: 'analyst', name: 'QA Engineer' });

// 3. Create development workflow
mcp__flow -
  nexus__workflow_create({
    name: 'Full-Stack Development',
    steps: [
      { id: 'requirements', action: 'analyze_requirements', agent: 'coordinator' },
      { id: 'db_design', action: 'design_schema', agent: 'Database Architect' },
      { id: 'backend', action: 'build_api', agent: 'Backend Developer', depends_on: ['db_design'] },
      {
        id: 'frontend',
        action: 'build_ui',
        agent: 'Frontend Developer',
        depends_on: ['requirements'],
      },
      {
        id: 'integration',
        action: 'integrate',
        agent: 'Backend Developer',
        depends_on: ['backend', 'frontend'],
      },
      { id: 'testing', action: 'qa_testing', agent: 'QA Engineer', depends_on: ['integration'] },
    ],
  });

// 4. Execute workflow
mcp__flow -
  nexus__workflow_execute({
    workflow_id: 'workflow_id',
    input_data: {
      project: 'E-commerce Platform',
      tech_stack: ['Node.js', 'React', 'PostgreSQL'],
    },
  });

Research & Analysis Pattern

// 1. Initialize mesh topology for collaborative research
mcp__flow -
  nexus__swarm_init({
    topology: 'mesh',
    maxAgents: 5,
    strategy: 'balanced',
  });

// 2. Spawn research agents
mcp__flow - nexus__agent_spawn({ type: 'researcher', name: 'Primary Researcher' });
mcp__flow - nexus__agent_spawn({ type: 'researcher', name: 'Secondary Researcher' });
mcp__flow - nexus__agent_spawn({ type: 'analyst', name: 'Data Analyst' });
mcp__flow - nexus__agent_spawn({ type: 'analyst', name: 'Insights Analyst' });

// 3. Orchestrate research task
mcp__flow -
  nexus__task_orchestrate({
    task: 'Research machine learning trends for 2025 and analyze market opportunities',
    strategy: 'parallel',
    maxAgents: 4,
    priority: 'high',
  });

CI/CD Pipeline Pattern

mcp__flow -
  nexus__workflow_create({
    name: 'Deployment Pipeline',
    description: 'Automated testing, building, and multi-environment deployment',
    steps: [
      { id: 'lint', action: 'lint_code', agent: 'code_quality', parallel: true },
      { id: 'unit_test', action: 'unit_tests', agent: 'test_runner', parallel: true },
      { id: 'integration_test', action: 'integration_tests', agent: 'test_runner', parallel: true },
      {
        id: 'build',
        action: 'build_artifacts',
        agent: 'builder',
        depends_on: ['lint', 'unit_test', 'integration_test'],
      },
      { id: 'security_scan', action: 'security_scan', agent: 'security', depends_on: ['build'] },
      { id: 'deploy_staging', action: 'deploy', agent: 'deployer', depends_on: ['security_scan'] },
      {
        id: 'smoke_test',
        action: 'smoke_tests',
        agent: 'test_runner',
        depends_on: ['deploy_staging'],
      },
      { id: 'deploy_prod', action: 'deploy', agent: 'deployer', depends_on: ['smoke_test'] },
    ],
    triggers: ['github_push', 'github_pr_merged'],
    metadata: {
      priority: 10,
      auto_rollback: true,
    },
  });

Data Processing Pipeline Pattern

mcp__flow -
  nexus__workflow_create({
    name: 'ETL Pipeline',
    description: 'Extract, Transform, Load data processing',
    steps: [
      { id: 'extract', action: 'extract_data', agent: 'data_extractor' },
      { id: 'validate_raw', action: 'validate_data', agent: 'validator', depends_on: ['extract'] },
      {
        id: 'transform',
        action: 'transform_data',
        agent: 'transformer',
        depends_on: ['validate_raw'],
      },
      { id: 'enrich', action: 'enrich_data', agent: 'enricher', depends_on: ['transform'] },
      { id: 'load', action: 'load_data', agent: 'loader', depends_on: ['enrich'] },
      { id: 'validate_final', action: 'validate_data', agent: 'validator', depends_on: ['load'] },
    ],
    triggers: ['schedule:0 2 * * *'], // Daily at 2 AM
    metadata: {
      retry_policy: 'exponential_backoff',
      max_retries: 3,
    },
  });

Templates & Patterns

Use Pre-built Templates

// Create swarm from template
mcp__flow -
  nexus__swarm_create_from_template({
    template_name: 'full-stack-dev',
    overrides: {
      maxAgents: 6,
      strategy: 'specialized',
    },
  });

// List available templates
mcp__flow -
  nexus__swarm_templates_list({
    category: 'quickstart', // Options: quickstart, specialized, enterprise, custom, all
    includeStore: true,
  });

Available Template Categories:

Quickstart Templates:

  • full-stack-dev: Complete web development swarm
  • research-team: Research and analysis swarm
  • code-review: Automated code review swarm
  • data-pipeline: ETL and data processing

Specialized Templates:

  • ml-development: Machine learning project swarm
  • mobile-dev: Mobile app development
  • devops-automation: Infrastructure and deployment
  • security-audit: Security analysis and testing

Enterprise Templates:

  • enterprise-migration: Large-scale system migration
  • multi-repo-sync: Multi-repository coordination
  • compliance-review: Regulatory compliance workflows
  • incident-response: Automated incident management

Custom Template Creation

Save successful swarm configurations as reusable templates for future projects.

Advanced Features

Real-time Monitoring

// Subscribe to execution streams
mcp__flow -
  nexus__execution_stream_subscribe({
    stream_type: 'claude-flow-swarm',
    deployment_id: 'deployment_id',
  });

// Get execution status
mcp__flow -
  nexus__execution_stream_status({
    stream_id: 'stream_id',
  });

// List files created during execution
mcp__flow -
  nexus__execution_files_list({
    stream_id: 'stream_id',
    created_by: 'claude-flow',
  });

Swarm Metrics & Analytics

// Get swarm performance metrics
mcp__flow -
  nexus__swarm_status({
    swarm_id: 'id',
  });

// Analyze workflow efficiency
mcp__flow -
  nexus__workflow_status({
    workflow_id: 'id',
    include_metrics: true,
  });

Multi-Swarm Coordination

Coordinate multiple swarms for complex, multi-phase projects:

// Phase 1: Research swarm
const researchSwarm =
  (await mcp__flow) -
  nexus__swarm_init({
    topology: 'mesh',
    maxAgents: 4,
  });

// Phase 2: Development swarm
const devSwarm =
  (await mcp__flow) -
  nexus__swarm_init({
    topology: 'hierarchical',
    maxAgents: 8,
  });

// Phase 3: Testing swarm
const testSwarm =
  (await mcp__flow) -
  nexus__swarm_init({
    topology: 'star',
    maxAgents: 5,
  });

Best Practices

1. Choose the Right Topology

// Simple projects: Star
mcp__flow - nexus__swarm_init({ topology: 'star', maxAgents: 3 });

// Collaborative work: Mesh
mcp__flow - nexus__swarm_init({ topology: 'mesh', maxAgents: 5 });

// Complex projects: Hierarchical
mcp__flow - nexus__swarm_init({ topology: 'hierarchical', maxAgents: 10 });

// Sequential workflows: Ring
mcp__flow - nexus__swarm_init({ topology: 'ring', maxAgents: 4 });

2. Optimize Agent Assignment

// Use vector similarity for optimal matching
mcp__flow -
  nexus__workflow_agent_assign({
    task_id: 'complex-task',
    use_vector_similarity: true,
  });

3. Implement Proper Error Handling

mcp__flow-nexus__workflow_create({
  name: "Resilient Workflow",
  steps: [...],
  metadata: {
    retry_policy: "exponential_backoff",
    max_retries: 3,
    timeout: 300000, // 5 minutes
    on_failure: "notify_and_rollback"
  }
})

4. Monitor and Scale

// Regular monitoring
const status = (await mcp__flow) - nexus__swarm_status();

// Scale based on workload
if (status.workload > 0.8) {
  (await mcp__flow) - nexus__swarm_scale({ target_agents: status.agents + 2 });
}

5. Use Async Execution for Long-Running Workflows

// Long-running workflows should use message queues
mcp__flow -
  nexus__workflow_execute({
    workflow_id: 'data-pipeline',
    async: true, // Non-blocking execution
  });

// Monitor progress
mcp__flow - nexus__workflow_queue_status({ include_messages: true });

6. Clean Up Resources

// Destroy swarm when complete
mcp__flow - nexus__swarm_destroy({ swarm_id: 'id' });

7. Leverage Templates

// Use proven templates instead of building from scratch
mcp__flow -
  nexus__swarm_create_from_template({
    template_name: 'code-review',
    overrides: { maxAgents: 4 },
  });

Integration with Claude Flow

Flow Nexus swarms integrate seamlessly with Claude Flow hooks:

# Pre-task coordination setup
npx claude-flow@alpha hooks pre-task --description "Initialize swarm"

# Post-task metrics export
npx claude-flow@alpha hooks post-task --task-id "swarm-execution"

Common Use Cases

1. Multi-Repo Development

  • Coordinate development across multiple repositories
  • Synchronized testing and deployment
  • Cross-repo dependency management

2. Research Projects

  • Distributed information gathering
  • Parallel analysis of different data sources
  • Collaborative synthesis and reporting

3. DevOps Automation

  • Infrastructure as Code deployment
  • Multi-environment testing
  • Automated rollback and recovery

4. Code Quality Workflows

  • Automated code review
  • Security scanning
  • Performance benchmarking

5. Data Processing

  • Large-scale ETL pipelines
  • Real-time data transformation
  • Data validation and quality checks

Authentication & Setup

# Install Flow Nexus
npm install -g flow-nexus@latest

# Register account
npx flow-nexus@latest register

# Login
npx flow-nexus@latest login

# Add MCP server to Claude Code
claude mcp add flow-nexus npx flow-nexus@latest mcp start

Support & Resources


Remember: Flow Nexus provides cloud-based orchestration infrastructure. For local execution and coordination, use the core claude-flow MCP server alongside Flow Nexus for maximum flexibility.