Claude Code Plugins

Community-maintained marketplace

Feedback

pytest-test-scaffolder

@okgoogle13/careercopilot
1
0

Scaffolds pytest unit tests for Python backend functions and classes. Use when creating tests for FastAPI endpoints, services, and utilities.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name pytest-test-scaffolder
description Scaffolds pytest unit tests for Python backend functions and classes. Use when creating tests for FastAPI endpoints, services, and utilities.

Pytest Test Scaffolder

Generates comprehensive unit tests for Python backend code using pytest with Pydantic validation, Firestore mocking, and Genkit integration testing patterns.

Workflow

  1. Identify function/class to test:

    • Ask for file path (e.g., backend/app/api/endpoints/profiles.py)
    • Read file to extract:
      • Function/class name
      • Parameters and type annotations
      • Return types
      • Dependencies (Firestore, Genkit, services)
    • Determine test location: backend/app/tests/{{module}}/test_{{name}}.py
  2. Analyze code structure:

    • Extract function signature and parameters
    • Identify external dependencies (database, API, AI services)
    • Determine input validation (Pydantic models)
    • Identify error cases (ValueError, ValidationError, HTTPException)
    • Check for async/await patterns
  3. Generate test file:

    • Replace placeholders in template:
      • {{FUNCTION_NAME}} - Function being tested
      • {{FUNCTION_MODULE}} - Module import path
      • {{PARAMETERS}} - Function parameters with defaults
      • {{RETURN_TYPE}} - Expected return type
      • {{HAPPY_PATH_TESTS}} - Success scenarios
      • {{ERROR_TESTS}} - Exception handling
      • {{FIXTURES}} - Mock/fixture setup
    • Write to: backend/app/tests/{{module}}/test_{{name}}.py
  4. Include comprehensive test scenarios:

    • Happy Path: Valid inputs produce expected output
    • Validation Error: Invalid Pydantic models rejected (422)
    • Not Found Error: Resource not found handled (404)
    • Permission Error: Unauthorized access rejected (401)
    • Server Error: Exceptions caught and logged (500)
    • Mock Dependencies: Firestore, Genkit, services mocked
    • Async Support: Use pytest-asyncio for async functions
    • Fixture Reuse: Shared fixtures in conftest.py
  5. Use pytest best practices:

    • Use fixtures for mock setup (Firestore, Firebase, Genkit)
    • Use monkeypatch for environment variables
    • Use @pytest.mark for test categorization
    • Mock external services (Firestore, Genkit flows)
    • Test both sync and async functions
    • Use descriptive test names: test_{{function}}_{{scenario}}
  6. Report success:

    • Show test file path
    • Display test count
    • Provide run command: pytest backend/app/tests/{{module}}/test_{{name}}.py -v
    • Link to mock patterns in references/

Test Categories

Endpoint Tests

# Happy path: Valid request → 200 response
def test_create_user_success(client, monkeypatch):
    mock_firestore = monkeypatch.setattr(...)
    response = client.post("/api/users", json={...})
    assert response.status_code == 200
    assert response.json()["id"]

# Validation error: Invalid input → 422 response
def test_create_user_validation_error(client):
    response = client.post("/api/users", json={"name": ""})
    assert response.status_code == 422

# Permission error: No auth → 401 response
def test_create_user_unauthorized(client):
    response = client.post("/api/users", json={...})
    assert response.status_code == 401

# Not found: Resource missing → 404 response
def test_get_user_not_found(client):
    response = client.get("/api/users/invalid-id")
    assert response.status_code == 404

Service Tests

# Mock Firestore for service tests
@pytest.fixture
def mock_firestore(monkeypatch):
    mock_db = MagicMock()
    monkeypatch.setattr("app.services.firestore_client", mock_db)
    return mock_db

def test_service_with_firestore(mock_firestore):
    mock_firestore.collection.return_value.document.return_value.get.return_value.exists = True
    result = UserService.get_user("user-123")
    assert result is not None

Genkit Flow Tests

# Mock Genkit responses
@pytest.fixture
def mock_genkit(monkeypatch):
    mock_flow = MagicMock()
    monkeypatch.setattr("app.ai.genkit_service.flow", mock_flow)
    return mock_flow

@pytest.mark.ai_services
async def test_genkit_flow_execution(mock_genkit):
    mock_genkit.return_value = {"text": "Generated response"}
    result = await ai_service.generate_content(prompt="test")
    assert "Generated" in result

Async Function Tests

@pytest.mark.asyncio
async def test_async_database_query(client, monkeypatch):
    mock_db = AsyncMock()
    mock_db.get_user.return_value = {"id": "123", "name": "Test"}
    monkeypatch.setattr("app.db.get_user", mock_db)

    result = await fetch_user_profile("123")
    assert result["name"] == "Test"

Fixtures & Mocking

See references/backend-test-patterns.md for:

  • Firestore mocking patterns
  • Firebase Auth mocking
  • Genkit flow mocking
  • TestClient setup for endpoints
  • Async fixture setup
  • Pydantic model factories

Template Files

Templates located in .claude/skills/pytest-test-scaffolder/templates/:

  • endpoint.test.py.tpl - FastAPI endpoint tests
  • service.test.py.tpl - Service/utility tests
  • async.test.py.tpl - Async function tests
  • conftest.py.tpl - Shared fixture template

Integration with Testing Strategy

  • testing-specialist: Uses this skill to generate backend tests
  • test-automation-specialist: Parallelizes backend test generation across modules
  • test-runner: Executes generated tests via pytest backend/app/tests/ -v
  • fullstack-integration-specialist: Uses alongside api-integration-test-scaffolder

Coverage Goals

  • Current: 85% (manual testing)
  • Target: 95% with scaffolded tests
  • Priority: Critical path endpoints → service layer → utilities

Run pytest backend/app/tests/ --cov=app --cov-report=html to measure coverage.