Claude Code Plugins

Community-maintained marketplace

Feedback

knowledge-distillation

@ovachiever/droid-tings
5
0

Compress large language models using knowledge distillation from teacher to student models. Use when deploying smaller models with retained performance, transferring GPT-4 capabilities to open-source models, or reducing inference costs. Covers temperature scaling, soft targets, reverse KLD, logit distillation, and MiniLLM training strategies.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name knowledge-distillation
description Compress large language models using knowledge distillation from teacher to student models. Use when deploying smaller models with retained performance, transferring GPT-4 capabilities to open-source models, or reducing inference costs. Covers temperature scaling, soft targets, reverse KLD, logit distillation, and MiniLLM training strategies.
version 1.0.0
author Orchestra Research
license MIT
tags Emerging Techniques, Knowledge Distillation, Model Compression, Teacher-Student, MiniLLM, Reverse KLD, Soft Targets, Temperature Scaling, Logit Distillation, Model Transfer
dependencies transformers, torch, datasets

Knowledge Distillation: Compressing LLMs

When to Use This Skill

Use Knowledge Distillation when you need to:

  • Compress models from 70B → 7B while retaining 90%+ performance
  • Transfer capabilities from proprietary models (GPT-4) to open-source (LLaMA, Mistral)
  • Reduce inference costs by deploying smaller student models
  • Create specialized models by distilling domain-specific knowledge
  • Improve small models using synthetic data from large teachers

Key Techniques: Temperature scaling, soft targets, reverse KLD (MiniLLM), logit distillation, response distillation

Papers: Hinton et al. 2015 (arXiv 1503.02531), MiniLLM (arXiv 2306.08543), KD Survey (arXiv 2402.13116)

Installation

# Standard transformers
pip install transformers datasets accelerate

# For training
pip install torch deepspeed wandb

# Optional: MiniLLM implementation
git clone https://github.com/microsoft/LMOps
cd LMOps/minillm
pip install -e .

Quick Start

Basic Knowledge Distillation

import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments

# 1. Load teacher (large) and student (small) models
teacher = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-70b-hf",  # Large teacher
    torch_dtype=torch.float16,
    device_map="auto"
)

student = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-2-7b-hf",  # Small student
    torch_dtype=torch.float16,
    device_map="cuda:0"
)

tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-70b-hf")

# 2. Define distillation loss
def distillation_loss(student_logits, teacher_logits, labels, temperature=2.0, alpha=0.5):
    """
    Combine hard loss (cross-entropy) with soft loss (KL divergence).

    Args:
        temperature: Softens probability distributions (higher = softer)
        alpha: Weight for distillation loss (1-alpha for hard loss)
    """
    # Hard loss: Standard cross-entropy with true labels
    hard_loss = F.cross_entropy(student_logits.view(-1, student_logits.size(-1)), labels.view(-1))

    # Soft loss: KL divergence between student and teacher
    soft_targets = F.softmax(teacher_logits / temperature, dim=-1)
    soft_student = F.log_softmax(student_logits / temperature, dim=-1)
    soft_loss = F.kl_div(soft_student, soft_targets, reduction='batchmean') * (temperature ** 2)

    # Combined loss
    return alpha * soft_loss + (1 - alpha) * hard_loss

# 3. Training loop
for batch in dataloader:
    # Teacher forward (no grad)
    with torch.no_grad():
        teacher_outputs = teacher(**batch)
        teacher_logits = teacher_outputs.logits

    # Student forward
    student_outputs = student(**batch)
    student_logits = student_outputs.logits

    # Compute distillation loss
    loss = distillation_loss(
        student_logits,
        teacher_logits,
        batch['labels'],
        temperature=2.0,
        alpha=0.7  # 70% soft, 30% hard
    )

    # Backward and optimize
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()

MiniLLM (Reverse KLD)

Source: arXiv 2306.08543 (2024)

Innovation: Use reverse KLD instead of forward KLD for better generative model distillation.

def reverse_kl_loss(student_logits, teacher_logits, temperature=1.0):
    """
    Reverse KL divergence: KL(Teacher || Student)
    Better for generative models than forward KL.
    """
    # Teacher distribution (target)
    p_teacher = F.softmax(teacher_logits / temperature, dim=-1)

    # Student distribution (model)
    log_p_student = F.log_softmax(student_logits / temperature, dim=-1)

    # Reverse KL: Sum over teacher, student learns to cover teacher's modes
    reverse_kl = -(p_teacher * log_p_student).sum(dim=-1).mean()

    return reverse_kl * (temperature ** 2)

# Training with MiniLLM
for batch in dataloader:
    with torch.no_grad():
        teacher_logits = teacher(**batch).logits

    student_logits = student(**batch).logits

    # Reverse KLD (better for generation)
    loss = reverse_kl_loss(student_logits, teacher_logits, temperature=1.0)

    loss.backward()
    optimizer.step()

Why reverse KL?

  • Forward KL (standard): Student learns to match teacher's mean
  • Reverse KL (MiniLLM): Student learns to cover all teacher's modes
  • Better for diverse text generation

Response Distillation

# Generate synthetic data from teacher, train student to imitate

# 1. Generate synthetic responses from teacher
prompts = ["Explain AI:", "What is ML?", "Define NLP:"]

teacher_responses = []
for prompt in prompts:
    inputs = tokenizer(prompt, return_tensors='pt').to(teacher.device)
    outputs = teacher.generate(**inputs, max_new_tokens=256, do_sample=True, temperature=0.7)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    teacher_responses.append(response)

# 2. Train student on teacher's responses (standard fine-tuning)
train_dataset = [
    {"text": f"{prompt}\n{response}"}
    for prompt, response in zip(prompts, teacher_responses)
]

# 3. Fine-tune student
trainer = Trainer(
    model=student,
    args=TrainingArguments(output_dir="./student", num_train_epochs=3, learning_rate=2e-5),
    train_dataset=train_dataset,
)
trainer.train()

Core Concepts

1. Temperature Scaling

Purpose: Soften probability distributions to expose teacher's uncertainty.

# Low temperature (T=1): Sharp distribution
logits = [3.0, 2.0, 1.0]
probs_T1 = softmax(logits / 1.0)  # [0.67, 0.24, 0.09]

# High temperature (T=4): Soft distribution
probs_T4 = softmax(logits / 4.0)  # [0.42, 0.34, 0.24]

# Higher T reveals more information about relative rankings

Rule: Use T=2-5 for distillation (2 is common default).

2. Loss Function Components

# Total loss = alpha * soft_loss + (1 - alpha) * hard_loss

# Soft loss: Learn from teacher's knowledge
soft_loss = KL(student || teacher)

# Hard loss: Learn from ground truth labels
hard_loss = CrossEntropy(student_output, true_labels)

# Typical values:
alpha = 0.5  # Balanced
alpha = 0.7  # More emphasis on teacher
alpha = 0.3  # More emphasis on labels

3. Forward vs Reverse KLD

# Forward KL: KL(Student || Teacher)
# - Student matches teacher's average behavior
# - Mode-seeking: Student focuses on teacher's highest probability modes
# - Good for classification

# Reverse KL: KL(Teacher || Student)
# - Student covers all of teacher's behaviors
# - Mode-covering: Student learns diverse behaviors
# - Good for generation (MiniLLM)

Training Strategies

Strategy 1: Logit Distillation

# Train student to match teacher's logits directly

def logit_distillation_trainer(student, teacher, dataloader, temperature=2.0):
    optimizer = torch.optim.AdamW(student.parameters(), lr=2e-5)

    for epoch in range(3):
        for batch in dataloader:
            # Get logits
            with torch.no_grad():
                teacher_logits = teacher(**batch).logits

            student_logits = student(**batch).logits

            # MSE on logits (alternative to KLD)
            loss = F.mse_loss(student_logits, teacher_logits)

            # Or use KLD
            # loss = F.kl_div(
            #     F.log_softmax(student_logits/temperature, dim=-1),
            #     F.softmax(teacher_logits/temperature, dim=-1),
            #     reduction='batchmean'
            # ) * (temperature ** 2)

            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

    return student

Strategy 2: Two-Stage Distillation

# Stage 1: Distill from teacher
student = distill(teacher, student, epochs=5)

# Stage 2: Fine-tune on task-specific data
student = fine_tune(student, task_data, epochs=3)

# Results in better task performance than single-stage

Strategy 3: Multi-Teacher Distillation

# Learn from multiple expert teachers

def multi_teacher_distillation(student, teachers, batch):
    """Distill from ensemble of teachers."""
    teacher_logits_list = []

    # Get logits from all teachers
    with torch.no_grad():
        for teacher in teachers:
            logits = teacher(**batch).logits
            teacher_logits_list.append(logits)

    # Average teacher predictions
    avg_teacher_logits = torch.stack(teacher_logits_list).mean(dim=0)

    # Student learns from ensemble
    student_logits = student(**batch).logits
    loss = F.kl_div(
        F.log_softmax(student_logits, dim=-1),
        F.softmax(avg_teacher_logits, dim=-1),
        reduction='batchmean'
    )

    return loss

Production Deployment

Complete Training Script

from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling

def train_distilled_model(
    teacher_name="meta-llama/Llama-2-70b-hf",
    student_name="meta-llama/Llama-2-7b-hf",
    output_dir="./distilled-llama-7b",
    temperature=2.0,
    alpha=0.7,
):
    # Load models
    teacher = AutoModelForCausalLM.from_pretrained(teacher_name, torch_dtype=torch.float16, device_map="auto")
    student = AutoModelForCausalLM.from_pretrained(student_name, torch_dtype=torch.float16)
    tokenizer = AutoTokenizer.from_pretrained(teacher_name)

    # Custom trainer with distillation
    class DistillationTrainer(Trainer):
        def compute_loss(self, model, inputs, return_outputs=False):
            # Student forward
            outputs_student = model(**inputs)
            student_logits = outputs_student.logits

            # Teacher forward (no grad)
            with torch.no_grad():
                outputs_teacher = teacher(**inputs)
                teacher_logits = outputs_teacher.logits

            # Distillation loss
            soft_targets = F.softmax(teacher_logits / temperature, dim=-1)
            soft_student = F.log_softmax(student_logits / temperature, dim=-1)
            soft_loss = F.kl_div(soft_student, soft_targets, reduction='batchmean') * (temperature ** 2)

            # Hard loss
            hard_loss = outputs_student.loss

            # Combined
            loss = alpha * soft_loss + (1 - alpha) * hard_loss

            return (loss, outputs_student) if return_outputs else loss

    # Training arguments
    training_args = TrainingArguments(
        output_dir=output_dir,
        num_train_epochs=3,
        per_device_train_batch_size=4,
        gradient_accumulation_steps=8,
        learning_rate=2e-5,
        warmup_steps=500,
        logging_steps=100,
        save_steps=1000,
        bf16=True,
        gradient_checkpointing=True,
    )

    # Train
    trainer = DistillationTrainer(
        model=student,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=DataCollatorForLanguageModeling(tokenizer, mlm=False),
    )

    trainer.train()
    student.save_pretrained(output_dir)
    tokenizer.save_pretrained(output_dir)

# Usage
train_distilled_model(
    teacher_name="meta-llama/Llama-2-70b-hf",
    student_name="meta-llama/Llama-2-7b-hf",
    temperature=2.0,
    alpha=0.7
)

Best Practices

1. Hyperparameter Selection

# Temperature
T = 1.0  # Sharp (less knowledge transfer)
T = 2.0  # Standard (good balance)
T = 5.0  # Soft (more knowledge transfer)

# Alpha (weight)
alpha = 0.5  # Balanced
alpha = 0.7  # Emphasize teacher knowledge
alpha = 0.9  # Strong distillation

# Rule: Higher T + higher alpha = stronger distillation

2. Model Size Ratio

# Good ratios (teacher/student)
70B / 7B = 10×    # Excellent
13B / 1B = 13×    # Good
7B / 1B = 7×      # Acceptable

# Avoid too large gap
70B / 1B = 70×    # Too large, ineffective

3. Data Quality

# Best: Use teacher-generated data + real data
train_data = {
    "teacher_generated": 70%,  # Diverse, high-quality
    "real_data": 30%            # Ground truth
}

# Avoid: Only real data (doesn't utilize teacher fully)

Evaluation

from transformers import pipeline

# Compare student vs teacher
teacher_pipe = pipeline("text-generation", model=teacher)
student_pipe = pipeline("text-generation", model=student)

prompts = ["Explain quantum computing:", "What is AI?"]

for prompt in prompts:
    teacher_out = teacher_pipe(prompt, max_new_tokens=100)
    student_out = student_pipe(prompt, max_new_tokens=100)

    print(f"Prompt: {prompt}")
    print(f"Teacher: {teacher_out[0]['generated_text']}")
    print(f"Student: {student_out[0]['generated_text']}")
    print(f"Match quality: {calculate_similarity(teacher_out, student_out):.2f}")

Resources