Claude Code Plugins

Community-maintained marketplace

Feedback

Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name model-merging
description Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.
version 1.0.0
author Orchestra Research
license MIT
tags Emerging Techniques, Model Merging, Mergekit, SLERP, TIES, DARE, Task Arithmetic, Model Fusion, No Retraining, Multi-Capability, Arcee AI
dependencies mergekit, transformers, torch

Model Merging: Combining Pre-trained Models

When to Use This Skill

Use Model Merging when you need to:

  • Combine capabilities from multiple fine-tuned models without retraining
  • Create specialized models by blending domain-specific expertise (math + coding + chat)
  • Improve performance beyond single models (often +5-10% on benchmarks)
  • Reduce training costs - no GPUs needed, merges run on CPU
  • Experiment rapidly - create new model variants in minutes, not days
  • Preserve multiple skills - merge without catastrophic forgetting

Success Stories: Marcoro14-7B-slerp (best on Open LLM Leaderboard 02/2024), many top HuggingFace models use merging

Tools: mergekit (Arcee AI), LazyMergekit, Model Soup

Installation

# Install mergekit
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit
pip install -e .

# Or via pip
pip install mergekit

# Optional: Transformer library
pip install transformers torch

Quick Start

Simple Linear Merge

# config.yml - Merge two models with equal weights
merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.5
dtype: bfloat16
# Run merge
mergekit-yaml config.yml ./merged-model --cuda

# Use merged model
python -m transformers.models.auto --model_name_or_path ./merged-model

SLERP Merge (Best for 2 Models)

# config.yml - Spherical interpolation
merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # Interpolation factor (0=model1, 1=model2)
dtype: bfloat16

Core Concepts

1. Merge Methods

Linear (Model Soup)

  • Simple weighted average of parameters
  • Fast, works well for similar models
  • Can merge 2+ models
merged_weights = w1 * model1_weights + w2 * model2_weights + w3 * model3_weights
# where w1 + w2 + w3 = 1

SLERP (Spherical Linear Interpolation)

  • Interpolates along sphere in weight space
  • Preserves magnitude of weight vectors
  • Best for merging 2 models
  • Smoother than linear
# SLERP formula
merged = (sin((1-t)*θ) / sin(θ)) * model1 + (sin(t*θ) / sin(θ)) * model2
# where θ = arccos(dot(model1, model2))
# t ∈ [0, 1]

Task Arithmetic

  • Extract "task vectors" (fine-tuned - base)
  • Combine task vectors, add to base
  • Good for merging multiple specialized models
# Task vector
task_vector = finetuned_model - base_model

# Merge multiple task vectors
merged = base_model + α₁*task_vector₁ + α₂*task_vector₂

TIES-Merging

  • Task arithmetic + sparsification
  • Resolves sign conflicts in parameters
  • Best for merging many task-specific models

DARE (Drop And REscale)

  • Randomly drops fine-tuned parameters
  • Rescales remaining parameters
  • Reduces redundancy, maintains performance

2. Configuration Structure

# Basic structure
merge_method: <method>  # linear, slerp, ties, dare_ties, task_arithmetic
base_model: <path>      # Optional: base model for task arithmetic

models:
  - model: <path/to/model1>
    parameters:
      weight: <float>   # Merge weight
      density: <float>  # For TIES/DARE

  - model: <path/to/model2>
    parameters:
      weight: <float>

parameters:
  # Method-specific parameters

dtype: <dtype>  # bfloat16, float16, float32

# Optional
slices:  # Layer-wise merging
tokenizer:  # Tokenizer configuration

Merge Methods Guide

Linear Merge

Best for: Simple model combinations, equal weighting

merge_method: linear
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      weight: 0.4
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.3
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      weight: 0.3
dtype: bfloat16

SLERP Merge

Best for: Two models, smooth interpolation

merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # 0.0 = first model, 1.0 = second model
dtype: bfloat16

Layer-specific SLERP:

merge_method: slerp
slices:
  - sources:
      - model: model_a
        layer_range: [0, 32]
      - model: model_b
        layer_range: [0, 32]
parameters:
  t:
    - filter: self_attn    # Attention layers
      value: 0.3
    - filter: mlp          # MLP layers
      value: 0.7
    - value: 0.5           # Default for other layers
dtype: bfloat16

Task Arithmetic

Best for: Combining specialized skills

merge_method: task_arithmetic
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1  # Math
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B  # Chat
    parameters:
      weight: 0.3
  - model: ajibawa-2023/Code-Mistral-7B  # Code
    parameters:
      weight: 0.2
dtype: bfloat16

TIES-Merging

Best for: Many models, resolving conflicts

merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5  # Keep top 50% of parameters
      weight: 1.0
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 1.0
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      density: 0.5
      weight: 1.0
parameters:
  normalize: true
dtype: bfloat16

DARE Merge

Best for: Reducing redundancy

merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5    # Drop 50% of deltas
      weight: 0.6
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 0.4
parameters:
  int8_mask: true  # Use int8 for masks (saves memory)
dtype: bfloat16

Advanced Patterns

Layer-wise Merging

# Different models for different layers
merge_method: passthrough
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 16]   # First half
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [16, 32]  # Second half
dtype: bfloat16

MoE from Merged Models

# Create Mixture of Experts
merge_method: moe
base_model: mistralai/Mistral-7B-v0.1
experts:
  - source_model: WizardLM/WizardMath-7B-V1.1
    positive_prompts:
      - "math"
      - "calculate"
  - source_model: teknium/OpenHermes-2.5-Mistral-7B
    positive_prompts:
      - "chat"
      - "conversation"
  - source_model: ajibawa-2023/Code-Mistral-7B
    positive_prompts:
      - "code"
      - "python"
dtype: bfloat16

Tokenizer Merging

merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
  - model: custom/specialized-model

tokenizer:
  source: "union"  # Combine vocabularies from both models
  tokens:
    <|special_token|>:
      source: "custom/specialized-model"

Best Practices

1. Model Compatibility

# ✅ Good: Same architecture
models = [
    "mistralai/Mistral-7B-v0.1",
    "teknium/OpenHermes-2.5-Mistral-7B",  # Both Mistral 7B
]

# ❌ Bad: Different architectures
models = [
    "meta-llama/Llama-2-7b-hf",  # Llama
    "mistralai/Mistral-7B-v0.1",  # Mistral (incompatible!)
]

2. Weight Selection

# ✅ Good: Weights sum to 1.0
models:
  - model: model_a
    parameters:
      weight: 0.6
  - model: model_b
    parameters:
      weight: 0.4  # 0.6 + 0.4 = 1.0

# ⚠️  Acceptable: Weights don't sum to 1 (for task arithmetic)
models:
  - model: model_a
    parameters:
      weight: 0.8
  - model: model_b
    parameters:
      weight: 0.8  # May boost performance

3. Method Selection

# Choose merge method based on use case:

# 2 models, smooth blend → SLERP
merge_method = "slerp"

# 3+ models, simple average → Linear
merge_method = "linear"

# Multiple task-specific models → Task Arithmetic or TIES
merge_method = "ties"

# Want to reduce redundancy → DARE
merge_method = "dare_ties"

4. Density Tuning (TIES/DARE)

# Start conservative (keep more parameters)
parameters:
  density: 0.8  # Keep 80%

# If performance good, increase sparsity
parameters:
  density: 0.5  # Keep 50%

# If performance degrades, reduce sparsity
parameters:
  density: 0.9  # Keep 90%

5. Layer-specific Merging

# Preserve base model's beginning and end
merge_method: passthrough
slices:
  - sources:
      - model: base_model
        layer_range: [0, 2]     # Keep first layers
  - sources:
      - model: merged_middle    # Merge middle layers
        layer_range: [2, 30]
  - sources:
      - model: base_model
        layer_range: [30, 32]   # Keep last layers

Evaluation & Testing

Benchmark Merged Models

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Test on various tasks
test_prompts = {
    "math": "Calculate: 25 * 17 =",
    "code": "Write a Python function to reverse a string:",
    "chat": "What is the capital of France?",
}

for task, prompt in test_prompts.items():
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    print(f"{task}: {tokenizer.decode(outputs[0])}")

Common Benchmarks

  • Open LLM Leaderboard: General capabilities
  • MT-Bench: Multi-turn conversation
  • MMLU: Multitask accuracy
  • HumanEval: Code generation
  • GSM8K: Math reasoning

Production Deployment

Save and Upload

from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Upload to HuggingFace Hub
model.push_to_hub("username/my-merged-model")
tokenizer.push_to_hub("username/my-merged-model")

Quantize Merged Model

# Quantize with GGUF
python convert.py ./merged-model --outtype f16 --outfile merged-model.gguf

# Quantize with GPTQ
python quantize_gptq.py ./merged-model --bits 4 --group_size 128

Common Pitfalls

❌ Pitfall 1: Merging Incompatible Models

# Wrong: Different architectures
models:
  - model: meta-llama/Llama-2-7b  # Llama architecture
  - model: mistralai/Mistral-7B   # Mistral architecture

Fix: Only merge models with same architecture

❌ Pitfall 2: Over-weighting One Model

# Suboptimal: One model dominates
models:
  - model: model_a
    parameters:
      weight: 0.95  # Too high
  - model: model_b
    parameters:
      weight: 0.05  # Too low

Fix: Use more balanced weights (0.3-0.7 range)

❌ Pitfall 3: Not Evaluating

# Wrong: Merge and deploy without testing
mergekit-yaml config.yml ./merged-model
# Deploy immediately (risky!)

Fix: Always benchmark before deploying

Resources

See Also

  • references/methods.md - Deep dive into merge algorithms
  • references/examples.md - Real-world merge configurations
  • references/evaluation.md - Benchmarking and testing strategies