Claude Code Plugins

Community-maintained marketplace

Feedback

GPU-accelerated data curation for LLM training. Supports text/image/video/audio. Features fuzzy deduplication (16× faster), quality filtering (30+ heuristics), semantic deduplication, PII redaction, NSFW detection. Scales across GPUs with RAPIDS. Use for preparing high-quality training datasets, cleaning web data, or deduplicating large corpora.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name nemo-curator
description GPU-accelerated data curation for LLM training. Supports text/image/video/audio. Features fuzzy deduplication (16× faster), quality filtering (30+ heuristics), semantic deduplication, PII redaction, NSFW detection. Scales across GPUs with RAPIDS. Use for preparing high-quality training datasets, cleaning web data, or deduplicating large corpora.
version 1.0.0
author Orchestra Research
license MIT
tags Data Processing, NeMo Curator, Data Curation, GPU Acceleration, Deduplication, Quality Filtering, NVIDIA, RAPIDS, PII Redaction, Multimodal, LLM Training Data
dependencies nemo-curator, cudf, dask, rapids

NeMo Curator - GPU-Accelerated Data Curation

NVIDIA's toolkit for preparing high-quality training data for LLMs.

When to use NeMo Curator

Use NeMo Curator when:

  • Preparing LLM training data from web scrapes (Common Crawl)
  • Need fast deduplication (16× faster than CPU)
  • Curating multi-modal datasets (text, images, video, audio)
  • Filtering low-quality or toxic content
  • Scaling data processing across GPU cluster

Performance:

  • 16× faster fuzzy deduplication (8TB RedPajama v2)
  • 40% lower TCO vs CPU alternatives
  • Near-linear scaling across GPU nodes

Use alternatives instead:

  • datatrove: CPU-based, open-source data processing
  • dolma: Allen AI's data toolkit
  • Ray Data: General ML data processing (no curation focus)

Quick start

Installation

# Text curation (CUDA 12)
uv pip install "nemo-curator[text_cuda12]"

# All modalities
uv pip install "nemo-curator[all_cuda12]"

# CPU-only (slower)
uv pip install "nemo-curator[cpu]"

Basic text curation pipeline

from nemo_curator import ScoreFilter, Modify
from nemo_curator.datasets import DocumentDataset
import pandas as pd

# Load data
df = pd.DataFrame({"text": ["Good document", "Bad doc", "Excellent text"]})
dataset = DocumentDataset(df)

# Quality filtering
def quality_score(doc):
    return len(doc["text"].split()) > 5  # Filter short docs

filtered = ScoreFilter(quality_score)(dataset)

# Deduplication
from nemo_curator.modules import ExactDuplicates
deduped = ExactDuplicates()(filtered)

# Save
deduped.to_parquet("curated_data/")

Data curation pipeline

Stage 1: Quality filtering

from nemo_curator.filters import (
    WordCountFilter,
    RepeatedLinesFilter,
    UrlRatioFilter,
    NonAlphaNumericFilter
)

# Apply 30+ heuristic filters
from nemo_curator import ScoreFilter

# Word count filter
dataset = dataset.filter(WordCountFilter(min_words=50, max_words=100000))

# Remove repetitive content
dataset = dataset.filter(RepeatedLinesFilter(max_repeated_line_fraction=0.3))

# URL ratio filter
dataset = dataset.filter(UrlRatioFilter(max_url_ratio=0.2))

Stage 2: Deduplication

Exact deduplication:

from nemo_curator.modules import ExactDuplicates

# Remove exact duplicates
deduped = ExactDuplicates(id_field="id", text_field="text")(dataset)

Fuzzy deduplication (16× faster on GPU):

from nemo_curator.modules import FuzzyDuplicates

# MinHash + LSH deduplication
fuzzy_dedup = FuzzyDuplicates(
    id_field="id",
    text_field="text",
    num_hashes=260,      # MinHash parameters
    num_buckets=20,
    hash_method="md5"
)

deduped = fuzzy_dedup(dataset)

Semantic deduplication:

from nemo_curator.modules import SemanticDuplicates

# Embedding-based deduplication
semantic_dedup = SemanticDuplicates(
    id_field="id",
    text_field="text",
    embedding_model="sentence-transformers/all-MiniLM-L6-v2",
    threshold=0.8  # Cosine similarity threshold
)

deduped = semantic_dedup(dataset)

Stage 3: PII redaction

from nemo_curator.modules import Modify
from nemo_curator.modifiers import PIIRedactor

# Redact personally identifiable information
pii_redactor = PIIRedactor(
    supported_entities=["EMAIL_ADDRESS", "PHONE_NUMBER", "PERSON", "LOCATION"],
    anonymize_action="replace"  # or "redact"
)

redacted = Modify(pii_redactor)(dataset)

Stage 4: Classifier filtering

from nemo_curator.classifiers import QualityClassifier

# Quality classification
quality_clf = QualityClassifier(
    model_path="nvidia/quality-classifier-deberta",
    batch_size=256,
    device="cuda"
)

# Filter low-quality documents
high_quality = dataset.filter(lambda doc: quality_clf(doc["text"]) > 0.5)

GPU acceleration

GPU vs CPU performance

Operation CPU (16 cores) GPU (A100) Speedup
Fuzzy dedup (8TB) 120 hours 7.5 hours 16×
Exact dedup (1TB) 8 hours 0.5 hours 16×
Quality filtering 2 hours 0.2 hours 10×

Multi-GPU scaling

from nemo_curator import get_client
import dask_cuda

# Initialize GPU cluster
client = get_client(cluster_type="gpu", n_workers=8)

# Process with 8 GPUs
deduped = FuzzyDuplicates(...)(dataset)

Multi-modal curation

Image curation

from nemo_curator.image import (
    AestheticFilter,
    NSFWFilter,
    CLIPEmbedder
)

# Aesthetic scoring
aesthetic_filter = AestheticFilter(threshold=5.0)
filtered_images = aesthetic_filter(image_dataset)

# NSFW detection
nsfw_filter = NSFWFilter(threshold=0.9)
safe_images = nsfw_filter(filtered_images)

# Generate CLIP embeddings
clip_embedder = CLIPEmbedder(model="openai/clip-vit-base-patch32")
image_embeddings = clip_embedder(safe_images)

Video curation

from nemo_curator.video import (
    SceneDetector,
    ClipExtractor,
    InternVideo2Embedder
)

# Detect scenes
scene_detector = SceneDetector(threshold=27.0)
scenes = scene_detector(video_dataset)

# Extract clips
clip_extractor = ClipExtractor(min_duration=2.0, max_duration=10.0)
clips = clip_extractor(scenes)

# Generate embeddings
video_embedder = InternVideo2Embedder()
video_embeddings = video_embedder(clips)

Audio curation

from nemo_curator.audio import (
    ASRInference,
    WERFilter,
    DurationFilter
)

# ASR transcription
asr = ASRInference(model="nvidia/stt_en_fastconformer_hybrid_large_pc")
transcribed = asr(audio_dataset)

# Filter by WER (word error rate)
wer_filter = WERFilter(max_wer=0.3)
high_quality_audio = wer_filter(transcribed)

# Duration filtering
duration_filter = DurationFilter(min_duration=1.0, max_duration=30.0)
filtered_audio = duration_filter(high_quality_audio)

Common patterns

Web scrape curation (Common Crawl)

from nemo_curator import ScoreFilter, Modify
from nemo_curator.filters import *
from nemo_curator.modules import *
from nemo_curator.datasets import DocumentDataset

# Load Common Crawl data
dataset = DocumentDataset.read_parquet("common_crawl/*.parquet")

# Pipeline
pipeline = [
    # 1. Quality filtering
    WordCountFilter(min_words=100, max_words=50000),
    RepeatedLinesFilter(max_repeated_line_fraction=0.2),
    SymbolToWordRatioFilter(max_symbol_to_word_ratio=0.3),
    UrlRatioFilter(max_url_ratio=0.3),

    # 2. Language filtering
    LanguageIdentificationFilter(target_languages=["en"]),

    # 3. Deduplication
    ExactDuplicates(id_field="id", text_field="text"),
    FuzzyDuplicates(id_field="id", text_field="text", num_hashes=260),

    # 4. PII redaction
    PIIRedactor(),

    # 5. NSFW filtering
    NSFWClassifier(threshold=0.8)
]

# Execute
for stage in pipeline:
    dataset = stage(dataset)

# Save
dataset.to_parquet("curated_common_crawl/")

Distributed processing

from nemo_curator import get_client
from dask_cuda import LocalCUDACluster

# Multi-GPU cluster
cluster = LocalCUDACluster(n_workers=8)
client = get_client(cluster=cluster)

# Process large dataset
dataset = DocumentDataset.read_parquet("s3://large_dataset/*.parquet")
deduped = FuzzyDuplicates(...)(dataset)

# Cleanup
client.close()
cluster.close()

Performance benchmarks

Fuzzy deduplication (8TB RedPajama v2)

  • CPU (256 cores): 120 hours
  • GPU (8× A100): 7.5 hours
  • Speedup: 16×

Exact deduplication (1TB)

  • CPU (64 cores): 8 hours
  • GPU (4× A100): 0.5 hours
  • Speedup: 16×

Quality filtering (100GB)

  • CPU (32 cores): 2 hours
  • GPU (2× A100): 0.2 hours
  • Speedup: 10×

Cost comparison

CPU-based curation (AWS c5.18xlarge × 10):

  • Cost: $3.60/hour × 10 = $36/hour
  • Time for 8TB: 120 hours
  • Total: $4,320

GPU-based curation (AWS p4d.24xlarge × 2):

  • Cost: $32.77/hour × 2 = $65.54/hour
  • Time for 8TB: 7.5 hours
  • Total: $491.55

Savings: 89% reduction ($3,828 saved)

Supported data formats

  • Input: Parquet, JSONL, CSV
  • Output: Parquet (recommended), JSONL
  • WebDataset: TAR archives for multi-modal

Use cases

Production deployments:

  • NVIDIA used NeMo Curator to prepare Nemotron-4 training data
  • Open-source datasets curated: RedPajama v2, The Pile

References

Resources