Claude Code Plugins

Community-maintained marketplace

Feedback

sentence-transformers

@ovachiever/droid-tings
5
0

Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.

Install Skill

1Download skill
2Enable skills in Claude

Open claude.ai/settings/capabilities and find the "Skills" section

3Upload to Claude

Click "Upload skill" and select the downloaded ZIP file

Note: Please verify skill by going through its instructions before using it.

SKILL.md

name sentence-transformers
description Framework for state-of-the-art sentence, text, and image embeddings. Provides 5000+ pre-trained models for semantic similarity, clustering, and retrieval. Supports multilingual, domain-specific, and multimodal models. Use for generating embeddings for RAG, semantic search, or similarity tasks. Best for production embedding generation.
version 1.0.0
author Orchestra Research
license MIT
tags Sentence Transformers, Embeddings, Semantic Similarity, RAG, Multilingual, Multimodal, Pre-Trained Models, Clustering, Semantic Search, Production
dependencies sentence-transformers, transformers, torch

Sentence Transformers - State-of-the-Art Embeddings

Python framework for sentence and text embeddings using transformers.

When to use Sentence Transformers

Use when:

  • Need high-quality embeddings for RAG
  • Semantic similarity and search
  • Text clustering and classification
  • Multilingual embeddings (100+ languages)
  • Running embeddings locally (no API)
  • Cost-effective alternative to OpenAI embeddings

Metrics:

  • 15,700+ GitHub stars
  • 5000+ pre-trained models
  • 100+ languages supported
  • Based on PyTorch/Transformers

Use alternatives instead:

  • OpenAI Embeddings: Need API-based, highest quality
  • Instructor: Task-specific instructions
  • Cohere Embed: Managed service

Quick start

Installation

pip install sentence-transformers

Basic usage

from sentence_transformers import SentenceTransformer

# Load model
model = SentenceTransformer('all-MiniLM-L6-v2')

# Generate embeddings
sentences = [
    "This is an example sentence",
    "Each sentence is converted to a vector"
]

embeddings = model.encode(sentences)
print(embeddings.shape)  # (2, 384)

# Cosine similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")

Popular models

General purpose

# Fast, good quality (384 dim)
model = SentenceTransformer('all-MiniLM-L6-v2')

# Better quality (768 dim)
model = SentenceTransformer('all-mpnet-base-v2')

# Best quality (1024 dim, slower)
model = SentenceTransformer('all-roberta-large-v1')

Multilingual

# 50+ languages
model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')

# 100+ languages
model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')

Domain-specific

# Legal domain
model = SentenceTransformer('nlpaueb/legal-bert-base-uncased')

# Scientific papers
model = SentenceTransformer('allenai/specter')

# Code
model = SentenceTransformer('microsoft/codebert-base')

Semantic search

from sentence_transformers import SentenceTransformer, util

model = SentenceTransformer('all-MiniLM-L6-v2')

# Corpus
corpus = [
    "Python is a programming language",
    "Machine learning uses algorithms",
    "Neural networks are powerful"
]

# Encode corpus
corpus_embeddings = model.encode(corpus, convert_to_tensor=True)

# Query
query = "What is Python?"
query_embedding = model.encode(query, convert_to_tensor=True)

# Find most similar
hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=3)
print(hits)

Similarity computation

# Cosine similarity
similarity = util.cos_sim(embedding1, embedding2)

# Dot product
similarity = util.dot_score(embedding1, embedding2)

# Pairwise cosine similarity
similarities = util.cos_sim(embeddings, embeddings)

Batch encoding

# Efficient batch processing
sentences = ["sentence 1", "sentence 2", ...] * 1000

embeddings = model.encode(
    sentences,
    batch_size=32,
    show_progress_bar=True,
    convert_to_tensor=False  # or True for PyTorch tensors
)

Fine-tuning

from sentence_transformers import InputExample, losses
from torch.utils.data import DataLoader

# Training data
train_examples = [
    InputExample(texts=['sentence 1', 'sentence 2'], label=0.8),
    InputExample(texts=['sentence 3', 'sentence 4'], label=0.3),
]

train_dataloader = DataLoader(train_examples, batch_size=16)

# Loss function
train_loss = losses.CosineSimilarityLoss(model)

# Train
model.fit(
    train_objectives=[(train_dataloader, train_loss)],
    epochs=10,
    warmup_steps=100
)

# Save
model.save('my-finetuned-model')

LangChain integration

from langchain_community.embeddings import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

# Use with vector stores
from langchain_chroma import Chroma

vectorstore = Chroma.from_documents(
    documents=docs,
    embedding=embeddings
)

LlamaIndex integration

from llama_index.embeddings.huggingface import HuggingFaceEmbedding

embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

from llama_index.core import Settings
Settings.embed_model = embed_model

# Use in index
index = VectorStoreIndex.from_documents(documents)

Model selection guide

Model Dimensions Speed Quality Use Case
all-MiniLM-L6-v2 384 Fast Good General, prototyping
all-mpnet-base-v2 768 Medium Better Production RAG
all-roberta-large-v1 1024 Slow Best High accuracy needed
paraphrase-multilingual 768 Medium Good Multilingual

Best practices

  1. Start with all-MiniLM-L6-v2 - Good baseline
  2. Normalize embeddings - Better for cosine similarity
  3. Use GPU if available - 10× faster encoding
  4. Batch encoding - More efficient
  5. Cache embeddings - Expensive to recompute
  6. Fine-tune for domain - Improves quality
  7. Test different models - Quality varies by task
  8. Monitor memory - Large models need more RAM

Performance

Model Speed (sentences/sec) Memory Dimension
MiniLM ~2000 120MB 384
MPNet ~600 420MB 768
RoBERTa ~300 1.3GB 1024

Resources