| name | building-chat-interfaces |
| description | Build AI chat interfaces with custom backends, authentication, and context injection. Use when integrating chat UI with AI agents, adding auth, or injecting user/page context. Covers ChatKitServer, useChatKit, and MCP auth patterns. |
Building Chat Interfaces
Build production-grade AI chat interfaces with custom backend integration.
Quick Start
# Backend (Python)
uv add chatkit-sdk agents httpx
# Frontend (React)
npm install @openai/chatkit-react
Core Architecture
Frontend (React) Backend (Python)
┌─────────────────┐ ┌─────────────────┐
│ useChatKit() │───HTTP/SSE───>│ ChatKitServer │
│ - custom fetch │ │ - respond() │
│ - auth headers │ │ - store │
│ - page context │ │ - agent │
└─────────────────┘ └─────────────────┘
Backend Patterns
1. ChatKit Server with Custom Agent
from chatkit.server import ChatKitServer
from chatkit.agents import stream_agent_response
from agents import Agent, Runner
class CustomChatKitServer(ChatKitServer[RequestContext]):
"""Extend ChatKit server with custom agent."""
async def respond(
self,
thread: ThreadMetadata,
input_user_message: UserMessageItem | None,
context: RequestContext,
) -> AsyncIterator[ThreadStreamEvent]:
if not input_user_message:
return
# Load conversation history
previous_items = await self.store.load_thread_items(
thread.id, after=None, limit=10, order="desc", context=context
)
# Build history string for prompt
history_str = "\n".join([
f"{item.role}: {item.content}"
for item in reversed(previous_items.data)
])
# Extract context from metadata
user_info = context.metadata.get('userInfo', {})
page_context = context.metadata.get('pageContext', {})
# Create agent with context in instructions
agent = Agent(
name="Assistant",
tools=[your_search_tool],
instructions=f"{history_str}\nUser: {user_info.get('name')}\n{system_prompt}",
)
# Run agent with streaming
result = Runner.run_streamed(agent, input_user_message.content)
async for event in stream_agent_response(context, result):
yield event
2. Database Persistence
from sqlmodel.ext.asyncio.session import AsyncSession
from sqlalchemy.ext.asyncio import create_async_engine
DATABASE_URL = os.getenv("DATABASE_URL").replace("postgresql://", "postgresql+asyncpg://")
engine = create_async_engine(DATABASE_URL, pool_pre_ping=True)
# Pre-warm connections on startup
async def warmup_pool():
async with engine.begin() as conn:
await conn.execute(text("SELECT 1"))
3. JWT/JWKS Authentication
from jose import jwt
import httpx
async def get_current_user(authorization: str = Header()):
token = authorization.replace("Bearer ", "")
async with httpx.AsyncClient() as client:
jwks = (await client.get(JWKS_URL)).json()
payload = jwt.decode(token, jwks, algorithms=["RS256"])
return payload
Frontend Patterns
1. Custom Fetch Interceptor
const { control, sendUserMessage } = useChatKit({
api: {
url: `${backendUrl}/chatkit`,
domainKey: domainKey,
// Custom fetch to inject auth and context
fetch: async (url: string, options: RequestInit) => {
if (!isLoggedIn) {
throw new Error('User must be logged in');
}
const pageContext = getPageContext();
const userInfo = { id: userId, name: user.name };
// Inject metadata into request body
let modifiedOptions = { ...options };
if (modifiedOptions.body && typeof modifiedOptions.body === 'string') {
const parsed = JSON.parse(modifiedOptions.body);
if (parsed.params?.input) {
parsed.params.input.metadata = {
userId, userInfo, pageContext,
...parsed.params.input.metadata,
};
modifiedOptions.body = JSON.stringify(parsed);
}
}
return fetch(url, {
...modifiedOptions,
headers: {
...modifiedOptions.headers,
'X-User-ID': userId,
'Content-Type': 'application/json',
},
});
},
},
});
2. Page Context Extraction
const getPageContext = useCallback(() => {
if (typeof window === 'undefined') return null;
const metaDescription = document.querySelector('meta[name="description"]')
?.getAttribute('content') || '';
const mainContent = document.querySelector('article') ||
document.querySelector('main') ||
document.body;
const headings = Array.from(mainContent.querySelectorAll('h1, h2, h3'))
.slice(0, 5)
.map(h => h.textContent?.trim())
.filter(Boolean)
.join(', ');
return {
url: window.location.href,
title: document.title,
path: window.location.pathname,
description: metaDescription,
headings: headings,
};
}, []);
3. Script Loading Detection
const [scriptStatus, setScriptStatus] = useState<'pending' | 'ready' | 'error'>(
isBrowser && window.customElements?.get('openai-chatkit') ? 'ready' : 'pending'
);
useEffect(() => {
if (!isBrowser || scriptStatus !== 'pending') return;
if (window.customElements?.get('openai-chatkit')) {
setScriptStatus('ready');
return;
}
customElements.whenDefined('openai-chatkit').then(() => {
setScriptStatus('ready');
});
}, []);
// Only render when ready
{isOpen && scriptStatus === 'ready' && <ChatKit control={control} />}
Next.js Integration
httpOnly Cookie Proxy
When auth tokens are in httpOnly cookies (can't be read by JavaScript):
// app/api/chatkit/route.ts
import { NextRequest, NextResponse } from "next/server";
import { cookies } from "next/headers";
export async function POST(request: NextRequest) {
const cookieStore = await cookies();
const idToken = cookieStore.get("auth_token")?.value;
if (!idToken) {
return NextResponse.json({ error: "Not authenticated" }, { status: 401 });
}
const response = await fetch(`${API_BASE}/chatkit`, {
method: "POST",
headers: {
Authorization: `Bearer ${idToken}`,
"Content-Type": "application/json",
},
body: await request.text(),
});
// Handle SSE streaming
if (response.headers.get("content-type")?.includes("text/event-stream")) {
return new Response(response.body, {
status: response.status,
headers: {
"Content-Type": "text/event-stream",
"Cache-Control": "no-cache",
},
});
}
return NextResponse.json(await response.json(), { status: response.status });
}
Script Loading Strategy
// app/layout.tsx
import Script from "next/script";
export default function RootLayout({ children }: { children: React.ReactNode }) {
return (
<html lang="en">
<head>
{/* MUST be beforeInteractive for web components */}
<Script
src="https://cdn.platform.openai.com/deployments/chatkit/chatkit.js"
strategy="beforeInteractive"
/>
</head>
<body>{children}</body>
</html>
);
}
MCP Tool Authentication
MCP protocol doesn't forward auth headers. Pass credentials via system prompt:
SYSTEM_PROMPT = """You are Assistant.
## Authentication Context
- User ID: {user_id}
- Access Token: {access_token}
CRITICAL: When calling ANY MCP tool, include:
- user_id: "{user_id}"
- access_token: "{access_token}"
"""
# Format with credentials
instructions = SYSTEM_PROMPT.format(
user_id=context.user_id,
access_token=context.metadata.get("access_token", ""),
)
Common Pitfalls
| Issue | Symptom | Fix |
|---|---|---|
| History not in prompt | Agent doesn't remember conversation | Include history as string in system prompt |
| Context not transmitted | Agent missing user/page info | Add to request metadata, extract in backend |
| Script not loaded | Component fails to render | Detect script loading, wait before rendering |
| Auth headers missing | Backend rejects requests | Use custom fetch interceptor |
| httpOnly cookies | Can't read token from JS | Create server-side API route proxy |
| First request slow | 7+ second delay | Pre-warm database connection pool |
Verification
Run: python3 scripts/verify.py
Expected: ✓ building-chat-interfaces skill ready
If Verification Fails
- Check: references/ folder has chatkit-integration-patterns.md
- Stop and report if still failing
Related Skills (Tiered System)
- streaming-llm-responses - Tier 2: Response lifecycle, progress updates, client effects
- building-chat-widgets - Tier 3: Interactive widgets, entity tagging, composer tools
- fetching-library-docs - ChatKit docs:
--library-id /openai/chatkit --topic useChatKit
References
- references/chatkit-integration-patterns.md - Complete patterns with evidence
- references/nextjs-httponly-proxy.md - Next.js cookie proxy patterns