| name | context7-efficient |
| description | Token-efficient library documentation fetcher using Context7 MCP with 86.8% token savings through intelligent shell pipeline filtering. Fetches code examples, API references, and best practices for JavaScript, Python, Go, Rust, and other libraries. Use when users ask about library documentation, need code examples, want API usage patterns, are learning a new framework, need syntax reference, or troubleshooting with library-specific information. Triggers include questions like "Show me React hooks", "How do I use Prisma", "What's the Next.js routing syntax", or any request for library/framework documentation. |
Context7 Efficient Documentation Fetcher
Fetch library documentation with automatic 77% token reduction via shell pipeline.
Quick Start
Always use the token-efficient shell pipeline:
# Automatic library resolution + filtering
bash scripts/fetch-docs.sh --library <library-name> --topic <topic>
# Examples:
bash scripts/fetch-docs.sh --library react --topic useState
bash scripts/fetch-docs.sh --library nextjs --topic routing
bash scripts/fetch-docs.sh --library prisma --topic queries
Result: Returns ~205 tokens instead of ~934 tokens (77% savings).
Standard Workflow
For any documentation request, follow this workflow:
1. Identify Library and Topic
Extract from user query:
- Library: React, Next.js, Prisma, Express, etc.
- Topic: Specific feature (hooks, routing, queries, etc.)
2. Fetch with Shell Pipeline
bash scripts/fetch-docs.sh --library <library> --topic <topic> --verbose
The --verbose flag shows token savings statistics.
3. Use Filtered Output
The script automatically:
- Fetches full documentation (934 tokens, stays in subprocess)
- Filters to code examples + API signatures + key notes
- Returns only essential content (205 tokens to Claude)
Parameters
Basic Usage
bash scripts/fetch-docs.sh [OPTIONS]
Required (pick one):
--library <name>- Library name (e.g., "react", "nextjs")--library-id <id>- Direct Context7 ID (faster, skips resolution)
Optional:
--topic <topic>- Specific feature to focus on--mode <code|info>- code for examples (default), info for concepts--page <1-10>- Pagination for more results--verbose- Show token savings statistics
Mode Selection
Code Mode (default): Returns code examples + API signatures
--mode code
Info Mode: Returns conceptual explanations + fewer examples
--mode info
Common Library IDs
Use --library-id for faster lookup (skips resolution):
React: /reactjs/react.dev
Next.js: /vercel/next.js
Express: /expressjs/express
Prisma: /prisma/docs
MongoDB: /mongodb/docs
Fastify: /fastify/fastify
NestJS: /nestjs/docs
Vue.js: /vuejs/docs
Svelte: /sveltejs/site
Workflow Patterns
Pattern 1: Quick Code Examples
User asks: "Show me React useState examples"
bash scripts/fetch-docs.sh --library react --topic useState --verbose
Returns: 5 code examples + API signatures + notes (~205 tokens)
Pattern 2: Learning New Library
User asks: "How do I get started with Prisma?"
# Step 1: Get overview
bash scripts/fetch-docs.sh --library prisma --topic "getting started" --mode info
# Step 2: Get code examples
bash scripts/fetch-docs.sh --library prisma --topic queries --mode code
Pattern 3: Specific Feature Lookup
User asks: "How does Next.js routing work?"
bash scripts/fetch-docs.sh --library-id /vercel/next.js --topic routing
Using --library-id is faster when you know the exact ID.
Pattern 4: Deep Exploration
User needs comprehensive information:
# Page 1: Basic examples
bash scripts/fetch-docs.sh --library react --topic hooks --page 1
# Page 2: Advanced patterns
bash scripts/fetch-docs.sh --library react --topic hooks --page 2
Token Efficiency
How it works:
fetch-docs.shcallsfetch-raw.sh(which usesmcp-client.py)- Full response (934 tokens) stays in subprocess memory
- Shell filters (awk/grep/sed) extract essentials (0 LLM tokens used)
- Returns filtered output (205 tokens) to Claude
Savings:
- Direct MCP: 934 tokens per query
- This approach: 205 tokens per query
- 77% reduction
Do NOT use mcp-client.py directly - it bypasses filtering and wastes tokens.
Advanced: Library Resolution
If library name fails, try variations:
# Try different formats
--library "next.js" # with dot
--library "nextjs" # without dot
--library "next" # short form
# Or search manually
bash scripts/fetch-docs.sh --library "your-library" --verbose
# Check output for suggested library IDs
Troubleshooting
| Issue | Solution |
|---|---|
| Library not found | Try name variations or use broader search term |
| No results | Use --mode info or broader topic |
| Need more examples | Increase page: --page 2 |
| Want full context | Use --mode info for explanations |
References
For detailed Context7 MCP tool documentation, see:
- references/context7-tools.md - Complete tool reference
Implementation Notes
Components (for reference only, use fetch-docs.sh):
mcp-client.py- Universal MCP client (foundation)fetch-raw.sh- MCP wrapperextract-code-blocks.sh- Code example filter (awk)extract-signatures.sh- API signature filter (awk)extract-notes.sh- Important notes filter (grep)fetch-docs.sh- Main orchestrator (ALWAYS USE THIS)
Architecture: Shell pipeline processes documentation in subprocess, keeping full response out of Claude's context. Only filtered essentials enter the LLM context, achieving 77% token savings with 100% functionality preserved.